
CIRCUIT CELLAR • AUGUST 2018 #33736
FE

AT
U

RE
S

Managing FPGA Design 
Complexity

O ver the past 35 years, there has 
been a constant progression of 
technologies for performing 
digital signal processing. Some 

of these have taken the form of processors 
dedicated to the task of efficiently executing 
complex math in parallel like the digital signal 
processors (DSPs) from Texas Instruments 
and Analog Devices and other specialized 
processors from various manufacturers. 
Another path has been to exploit the 
specialized processing engines inside more 
general-purpose processors from companies 
like Intel and Motorola (now NXP), or to 
repurpose highly-parallelized processors 
like graphics processing units (GPU) for 
DSP applications like radar. In each of these 
examples, it’s been the software engineer’s 
job to create programs or applications for a 
fixed-hardware architecture. This might be 
accomplished by programming on the “bare 
metal” and accessing internal registers 
and resources of the processor directly, or 
through the window of an operating system 
which manages the processor’s resources.

FPGAs: A GAME CHANGER
This paradigm changed with the 

introduction of programmable logic devices 
and specifically with the advent of FPGAs. 
An FPGA’s logic is a mesh of gates and 
interconnects that have no function until 
a logic design is loaded into the array 
connecting the gates to form circuits. Modern 
FPGAs can contain millions of logic gates 
and thousands of embedded DSP processors 
allowing FPGA hardware designers to create 
extremely sophisticated and complex 
application-specific hardware functions. And 
this is where the job of the software engineer 
takes a turn.

With fixed targets like Texas Instrument’s 
DSPs or Intel’s processors the software 
engineer writes programs for a static 
and well-defined hardware architecture. 
However, with FPGAs, the functions and 
even the interfaces into the hardware can 
vary. The FPGA functions are determined by 
what logic design the FPGA engineer uses to 
configure the FPGA and this can change with 
different iterations of the design.

Modern FPGAs can contain millions of 
logic gates and thousands of embedded 
DSP processors allowing FPGA hardware 
designers to create extremely sophisticated 
and complex application-specific hardware 
functions. Bob explores how today’s FPGA 
technology has revamped the roles of both 
hardware and software engineers as well 
as how dealing with on-chip IP adds new 
layers of complexity.

Easing IP Integration

By
Bob Sgandurra, Pentek



circuitcellar.com 37
FEATU

RES

In addition, FPGA logic design and the 
software to control it are intimately tied 
together. This relationship and the need to 
keep FPGA design changes and software 
changes in sync are a reality that must 
be managed in the design environment of 
sophisticated FPGA-based systems.

And let’s not forget the FPGA design 
engineer. With the complexity of high 
performance FPGAs, the task of the FPGA 
designer has also become increasingly more 
demanding. The logic design—sometimes 
called Intellectual Property or IP—is 
typically created using either VHDL or Verilog 
hardware description languages. And while 
these languages are the cornerstone of FPGA 
design, new tools and design environments 
can improve design efficiencies, particularly 
when developing for very large FPGAs with 
millions of gates. And not only new tools, but 
some of the basic philosophy of how IP is 
defined is seeing a change.

THE AXI4 STANDARD
As the density of FPGA fabric becomes 

greater, the possibility of creating more and 
more sophisticated IP tends to increase. 
Often components of the IP design can come 
from multiple sources:

From the FPGA manufacturer: Much of 
the IP needed to create the overall dataflow 
through the FPGA fabric and control 
for specific FPGA interfaces is typically 
included in the libraries provide by the 
FPGA manufacturer. In addition, common 
peripheral resources like SDRAM are typically 

supported by manufacturer provided tools to 
generate the required IP.

From equipment manufacturers: Often the 
FPGA is part of a development or deployable 
hardware solution manufactured by a 
company other than the FPGA manufacturer. 
In many of these systems additional hardware 
like analog-to-digital and digital-to-analog 
converters are part of the overall design and 
IP to control these components should be 
provided by the hardware manufacturer.

From an IP vendor: Specialized processing 
functions can be purchased as IP from 
companies and individuals who target 
specific applications. These are often 
delivered as encrypted cores or “black-
boxes” where just the signals entering and 
leaving the processing block is exposed for 
the purchaser to connect to the rest of his IP.

Custom IP created by you: In most 
designs, the bulk of the IP is usually created 
by the engineer responsible for designing the 
system.

With IP coming from these different 
sources an immediate challenge is making 
sure the different IP components have similar 
signal interfaces enabling data to pass from 
one block to the next (Figure 1).

The FPGA manufacturers have addressed 
this by standardizing on a common signal 
interface specification. Borrowed from Arm 
processor technology, both Xilinx and Altera 
are using the Advanced eXtensible Interface 
(AXI). Now in its second generation (AXI4), 
is an open standard, on-chip interconnect 
specification for the connection of functional 

FIGURE 1
Incompatible signal interfaces are 
depicted here graphically.

FIGURE 2
AXI4 provides a common interface 
definition.



CIRCUIT CELLAR • AUGUST 2018 #33738
FE

AT
U

RE
S

blocks in system-on-chip designs. Now 
extended to all FPGA IP, it provides the 
common interface for IP from different 
sources to remain compatible, providing 
a level of plug and play functionality not 
previously possible (Figure 2).

In addition to providing IP compatibility 
from different sources, IP reuse is enabled 
when a block from a previous design 
can get reused in a new design. This is 
possible when the interface signals are the 
same for both the old and new designs. 
Overall productivity is also improved when 
developers need to learn only a single 
interface protocol for IP.

For AXI4 to be useful as a universal 
standard, it must be flexible enough to handle 
different signal requirements for different 
types of processing and data moving IP. 
AXI4 accomplishes this by providing three 
different types of interfaces as shown in 
Table 1.

To add further flexibility, FPGA 
manufacturer’s like Xilinx provide cores 
for interconnecting AXI4 interfaces of 
different widths and speeds. The Xilinx AXI 
Interconnect IP core can accept and connect 
AXI4 interfaces with data widths of 32, 64, 
128, 256, 512 or 1024 bits and with different 
synchronous or asynchronous clock rates.

BLOCK DIAGRAM DESIGN TOOLS
As IP designs become larger and 

more complex, the job of structuring and 
visualizing data flows and the hierarchy of 
the design becomes an increasing challenge. 
Both Xilinx and Altera have addressed this in 
recent versions of their Vivado and Quartus 
Prime tools. For this example, we’ll look at 
Xilinx Vivado and the included IP Integrator 
tool (Figure 3). Building on the foundation 
of the common signal interface provided by 
AXI4, IP Integrator allows IP to be “packaged” 
into blocks that can be interconnected on a 
graphical design canvas.

Because AXI4 is the common interface 
used to create the signals entering and 
leaving the blocks, much of the wiring details 
can be abstracted leaving the interconnects 
to become “wires” that can be “drawn” 
between signal ports on each block. As 
described earlier, Xilinx’s AXI Interconnect 
IP core handles buses of different widths 
and speeds, further simplifying the 
interconnection of blocks that might 
otherwise not be compatible.

A standard is only valuable when it’s 
accepted and used. As mentioned earlier, 
both Altera and Xilinx support AXI4 with 
virtually all of Xilinx IP delivered in this 
format. A noticeable shift to AXI4 support 
can also be seen from IP suppliers and 
hardware manufacturers with FPGA based 
products. Pentek, as a designer and 
manufacturer of high-performance FPGA 
based data acquisition and processing 
products, has also embraced AXI4 and block 
diagram design. To edit the IP design of a 

TABLE 1
AXI4 is flexible enough to handle different signal requirements for different types of processing and data moving IP. AXI4 does this by providing three different types of interfaces.

AXI4 (full) 

For high-performance memory-mapped requirements. While providing high throughout, it does come 
with the cost of using more FPGA resources to implement. For many applications the combination of 
AXI4-Lite and AXI4-Stream, described below, can provide similar performance at the cost of less FPGA 
resources.

AXI4-Lite For simple, lower-throughput memory-mapped communication. For example, read and write access to 
status and control registers.

AXI4-Stream Provides an interface for high-speed data streaming.

ABOUT THE AUTHOR 
Robert Sgandurra serves as director of prod-
uct management for Pentek’s DSP, data acqui-
sition, digital receiver and software products 
where he’s responsible for product definition, 
educating and presenting technical seminars to 
systems engineers and Pentek’s sales force on 
the latest product technologies. Prior to joining 
Pentek, his background included seven years in 
the medical electronics industry where he de-
signed and managed projects for ultrasound im-
aging. Robert joined Pentek in 1994, working as 
an application engineer and system integrator.

For detailed article references and additional resources go to: 
www.circuitcellar.com/article-materials

RESOURCES

Pentek | www.pentek.com

http://www.circuitcellar.com/article-materials
http://www.pentek.com


circuitcellar.com 39
FEATU

RES

Pentek product, an FPGA engineer opens 
Pentek’s Navigator FPGA Design Kit in Vivado. 
He or she then has immediate access to the 
product’s entire FPGA design as a block 
diagram. Individual IP cores can be removed, 
modified, or replaced with custom IP to meet 
the application’s processing requirements. 
Viewing the product’s FPGA design as a 
block diagram enables the designer to see 
the products functions at a higher level and 
simplifies the design processes by working 
at the “interface” and not the “signal” level. 
If at any time a designer needs to work with 
the VHDL code directly, it is always accessible 
in a source window, as well as full on-line 
documentation of every Pentek IP core.

SYNCHRONIZING IP & SOFTWARE
Up to this point we’ve been looking mostly 

at FPGA IP and the challenges faced by IP 
designers. And while some processing done 
in FPGAs is fixed with no runtime interface 
that needs to be controlled or initiated for 
operation, much of the IP created for FPGAs 
looks like a piece of hardware with control 
and status registers. And just like a piece 
of hardware, software—running typically 
on a Windows or Linux based machine—is 
controlling the FPGA through an interface like 
PCIe or Ethernet. But as mentioned earlier, 
FPGAs and the very fluid nature of hardware 
designs created with FPGAs, creates a 
challenge for software engineers. During the 
development of a project or product, the IP and 

the software to control it will often need to go 
through many iterations. From initial design 
to debugging and through feature changes 
and redesign, the jobs of the IP designer 
and software engineer are intimately tied 
together as changes in the IP require changes 
in the software. For a small project this can 
be the same person, but often—especially for 
large projects—there can be teams of IP and 
software engineers at work.

Here again, the FPGA manufacturers 
have risen to the challenge and their latest 
tool offerings include features to generate 
templates from the IP design that can 
be used as the framework of software for 
control and status of the FPGA functions. 
The challenge can become greater when 
modifying existing IP and software. As an 
example, all Pentek products are delivered 
with a full suite of IP based functions. A 
typical Pentek product is built around a high-
performance FPGA surrounded by additional 
hardware include analog to digital and digital 
to analog converters, hardware circuitry 
for generating and synchronizing clocks, 
SDRAM or SRAM memory, specialized optical 
interfaces, a PCIe and Ethernet interface and 
so on. At some level, each of these hardware 
features is controlled by a piece of IP in the 
FPGA. Add to that IP based data processing 
functions like, DMA engines, data acquisition 
and waveform generator engines, data 
tagging and metadata creation, FIR filters, 
digital downconverters and so on.

FIGURE 3
Shown here is a design consisting of IP blocks connected in Xilinx’s IP Integrator.



CIRCUIT CELLAR • AUGUST 2018 #33740
FE

AT
U

RE
S

To provide a complete product, all of the IP based functions need software libraries provided 
to control the IP. While some product users will be able to satisfy their system requirements 
with only the suite of IP functions provided, most will need to modify the supplied IP or 
create custom processing for their application. With each change in IP, a software change 
is most likely required. Here Pentek has taken a very specific approach to help keep IP and 
software changes synchronized. The company’s Navigator Board Support Package (BSP) is the 
complimentary tool to the Navigator FPGA Design Kit. Designed to work together, every IP 
module function is matched to a complimentary BSP module (Figure 4). As a change is made 
to an IP module, the matching BSP function can be easily found and the required change can 
be made in the software.

IP PLUMBING WORK
The IP library also includes modules that are not part of 

the shipped hardware product but may be used by the IP 
designer as needed. The DMA engines found in the library 
are an example. Consider an example where built-in board 
functions stream data from an analog to digital converter, 
through some default processing and out through the PCIe 
interface where it can be sent to a computer for recording. The 
user in that example may also need to split off the data to feed 
some custom processing or analysis function. The Navigator 
IP library includes a number of DMA engines for streaming 
data. The IP designer can “draw” this block into the board 
design, connecting it between the existing data streaming 
path and his custom processing IP block. The Navigator Board 
Support Package includes BSP modules for controlling these 
DMA IP modules that can be turned on as needed. While the IP 
designer still needs to create a software function to control his 
or her custom processing IP, the Navigator tools provide much 
of the “plumbing” to enable the designers custom IP.

As each new generation of FPGA grows in processing 
power and logic density, the trend is for IP designs to grow 
larger and more complex to exploit the increasing 
hardware capabilities. While this constant migration 
towards higher density hardware and IP designs can 
deliver advantages in overall size, cost and power, it often 
complicates the IP developer and software engineer’s job 
by requiring larger and more complex IP and software 
designs. FPGA manufactures as well as IP vendors and 
FPGA based product manufactures like Pentek recognize 
this trend. The industry wide adaptation of an interface 
like AXI4 can make the process of IP design and reuse 
more efficient, and individual innovations from 
manufactures in the FPGA space can help manage the very 
complex process of IP based design.  

FIGURE 4
Navigator provides a one-to-one 
relationship between IP and BSP 
modules.

www.cc-webshop.com

