Features - Accepts RF signals from 925 MHz to 2175 MHz - Programmable LNA handles L-Band input signal levels from -50 dBm to +10 dBm - Programmable analog downconverter provides IF or I+Q baseband signals at frequencies up to 123 MHz - Two 400 MHz 14-bit A/Ds digitize IF or I+Q signals synchronously - Two FPGA-based multiband DDCs (digital downconverters) - Xilinx[®] Kintex[®] UltraScale[™] FPGA - Five GB of DDR4 SDRAM - Sample clock synchronization to an external system reference - PCI Express (Gen. 1, 2 & 3) interface up to x8 - Clock/sync bus for multimodule synchronization - Optional LVDS port and gigabit serial connections for custom FPGA I/O - Optional optical interface for data streaming - Navigator[®] BSP for software development - Navigator[®] FDK for custom IP development - SPARK[®] fully-integrated development system - Free lifetime applications support # **Applications** - Complete radar and software radio interface solution - Communication receiver - Radar receiver - Analog I/O for digital recording - Wideband data acquisition - Remote monitoring - Sensor interfaces #### The Jade Architecture Evolved from the proven designs of Pentek's Cobalt[®] and Onyx[®] families, Jade[®] raises the processing performance while lowering the overall power requirements by building on the Xilinx family of Kintex UltraScale FPGAs. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions as well as providing an ideal platform for user-created intellectual property (IP). Each member of the Jade family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 54891 factory-installed functions include two A/D acquisition modules for simplifying data capture and tagging, two DDCs (digital downconverters), an RF tuner controller, and a set of specialized DMA engines for efficient data transfers between the board and a host computer. Additional IP includes: an IP module for DDR4 SDRAM memory control; a clock and synchronization generator; a test signal generator, and a PCIe interface. These factory-installed applications enable the 54891 to operate as a complete turnkey solution for many applications, thereby saving the cost and time of custom IP development. ### Xilinx Kintex UltraScale FPGAs Depending on the requirements of the processing task, the Kintex Ultrascale can be selected from a range of FPGAs: KU035 through KU115. The KU115 features 5520 DSP48E2 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, a lower-cost FPGA can be installed. ## 54891 Block Diagram Click on a block for more information. ## **RF Tuner Stage** A front panel SSMC connector accepts L-Band signals between 925 MHz and 2175 MHz, typically from an L-Band antenna or an LNB (low noise block). The Maxim MAX2121 tuner directly converts these L-Band signals to IF or baseband using a broadband I/Q downconverter. The device includes an RF variable-gain LNA, a PLL (phase-locked loop) synthesized local oscillator, quadrature (I+Q) downconverting mixers, output low pass filters, and variable-gain baseband amplifiers. The fractional-N PLL synthesizer locks its VCO to one of three selectable frequency references: the timing generator output, an external reference input between 12 and 30 MHz, or an on-board crystal oscillator. Together, the RF LNA and baseband amplifiers accommodate input signal levels from -50 dBm to +10 dBm. The integrated low pass filter has a 3 dB bandwidth of 123.75 MHz. For best performance, the analog outputs of the MAX2121 should be used in the IF mode instead of the analog baseband I+Q mode. In this case, the IF signal is digitized by the A/D converter and then delivered to the DDC to produce perfectly balanced digital I+Q complex samples, 16 bits each. #### A/D Converters and DDCs The two analog tuner outputs are digitized by two Texas Inst. ADS5474 400 MHz 14-bit A/D converters. Another benefit of using the preferred IF analog output mode is that two independent A/D and DDC channels are now available for digitizing and downconverting two signals with different center frequencies and bandwidths. ## A/D Acquisition IP Modules The 54891 features two A/D Acquisition IP Modules for easily capturing and moving data. Each module can receive data from either of the two A/Ds, or a test signal generator. Each acquisition module has a DMA engine for efficiently moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary. For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data. #### **DDC IP Cores** Within each A/D Acquisition IP Module is a powerful DDC IP core. Because of the flexible input routing of the A/D Acquisition IP modules, many different configurations can be achieved including one A/D driving both DDCs or each of the two A/Ds driving its own DDC. Each DDC has an independent 32-bit tuning frequency setting that ranges from DC to $f_{\rm S}$, where $f_{\rm S}$ is the A/D sampling frequency. Each DDC can have its own unique decimation setting, supporting two different output bandwidths. Decimations can be set from 2 to 65,536 to satisfy most applications. The decimating filter for each DDC accepts a unique set of user-supplied 16-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8*f_{\rm s}/{\rm N}$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 24-bit I + 24-bit Q or 16-bit I + 16-bit Q samples at a rate of $f_{\rm s}/{\rm N}$. # A/D Clocking & Synchronization An internal timing generator provides all timing, gating, triggering and synchronization functions required by the A/D converters. It also serves as an optional source for the L-Band tuner reference. The front panel SSMC clock input can be used directly as the A/D sample clock. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (voltage-controlled crystal oscillator). In this mode, the front panel SSMC clock input connector accepts a 10 MHz reference signal for synchronizing the VCXO using a PLL. The timing generator uses a front panel LVPECL 26-pin clock/sync connector for one clock, two sync, and two gate/trigger signals. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate/ trigger signals within the module. In the master mode, the LVPECL bus drives output timing signals to synchronize multiple slave modules, supporting synchronous sampling and sync functions across all connected boards. #### **Memory Resources** The 54891 architecture includes a 5 GB bank of DDR4 SDRAM memory. This resource is used by the board's built-in functions for data storage and buffering, but can also be used for custom applications. The Navigator FDK provides a memory controller as well as guidance on the most efficient use of the memory when creating IP functions. ## **PCI Express Interface** The 54891 includes an industry standard interface fully compliant with PCI Express Gen. 1, 2, and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module. ## 3U VPX Interface The 54891 complies with the VITA 65.0 3U VPX specification. In addition to supporting PCIe Gen. 3, x8 on the VPX P1 connector, option -105 adds up to 8 more gigabit serial lanes connected directly to the FPGA for supporting user-installed protocols. The 54891 offers flexible analog and digital interface options for the VPX-P2 to meet system-specific requirements. Option -104 provides 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O. When purchased with option -109, the 54891 supports the emerging VITA 66.5 standard and provides four optical duplex lanes to a mating VITA 66.5 backplane connector. With the installation of a serial protocol like 10 or 40 Gigabit Ethernet in the FPGA, the VITA 66.5 interface enables high-bandwidth communications between boards or chassis independent of the PCIe interface. See Specifications for the OpenVPX Profile ## **Navigator Design Suite** For applications that require specialized functions, the Navigator Design Suite allows customers to fully utilize the processing power of the FPGA. It includes an FPGA design kit for integrating custom IP into Pentek's factory-shipped design, and a board support package for creating host applications for control of all hardware and FPGA IP-based functions. The Navigator FPGA Design Kit (FDK) for the Xilinx[®] Vivado[®] Design Suite includes the complete Vivado project folder for each Pentek product with all design files for the factory-installed FPGA IP. Vivado's IP Integrator is a graphical design entry tool that visually presents the complete block diagram of all IP blocks so the developer can access every component of the Pentek design. Developers can quickly import, delete, and modify IP blocks and change interconnection paths using simple mouse operations. Navigator FDK includes Pentek's IP core library of more than 100 functions representing a wealth of resources for DSP, data formatting, timing, and streaming operations, all based on the powerful AXI4 standard. multilevel documentation for each IP core is a mouse click away, and fully consistent with Xilinx IP cores. The Navigator Board Support Package (BSP) provides software support for Pentek boards. It enables operational control of all hardware functions on the board and IP functions in the FPGA. The BSP structure is designed to complement the functions of the FDK by maintaining a one-to-one relationship between FDK and BSP components. For each IP block found in the FDK library, a matching software module can be found in the BSP. This organization simplifies the creation and editing of software to support new IP functions and modifications to existing IP cores. Because all Pentek boards are shipped with a full suite of built-in IP functions and numerous software examples, new applications can be developed by building on the provided software examples or built entirely new with the BSP extensive libraries. All BSP libraries are provided as C-language source for full access and code transparency. The Navigator BSP includes the Signal Viewer, a full-featured analysis tool, that displays data in time and frequency domains. Built-in measurement functions display 2nd and 3rd harmonics, THD (total harmonic distortion), and SINAD (signal to noise and distortion). Interactive cursors allow users to mark data points and instantly calculate amplitude and frequency of displayed signals. With the Signal Viewer users can install the Pentek hardware and Navigator BSP and start viewing analog signals immediately. #### **Front Panel Connections** The XMC front panel includes five SSMC coaxial connectors and a 26-pin Sync Bus connector for input/output of clock, trigger and analog signals. The front panel also includes nine LEDs. - Sync Bus Connector: The 26pin Sync Bus front panel connector, labeled SYNC/GATE, provides clock, sync, and gate input/output pins for the LVPECL Sync Bus. - User LED: The green USR LED is for user applications. - Link LED: The green LNK LED blinks when a valid link has been established over the PCIe interface. - MAS LED: The yellow MAS LED illuminates when this model is the Sync Bus Master. - PPS LED: The green PPS LED illuminates when a valid PPS signal is detected. The LED will blink at the rate of the PPS signal. - Over Temperature LED: The red TMP LED illuminates when an over-temperature or over-voltage condition is indicated by any of the temperature/voltage sensors on the PCB. - Clock Input Connector: One SSMC coaxial connector, labeled CLK, for input of an external sample clock. - Clock LED: The green CLK LED illuminates when a valid sample clock signal is detected. - Reference Clock Input Connector: One SSMC coaxial connector for a RF analog signal input, labeled RF IN. - Reference Clock Output Connector: One SSMC coaxial connector for a tuner reference clock output, labeled REF OUT. - Analog Signal Input Connector: One SSMC coaxial connector, labeled REF IN, is for a tuner reference clock input. - ADC Overload LEDs: Two red OV (overload) LEDs for each A/D channel. - Trigger Input Connector: The SSMC coaxial connector labeled TRIG is for input of an external trigger or gate signal. The signal must be a LVTTL signal. - User LED: One green USR LED for user applications. ## **Specifications** #### **Front Panel Analog Signal Inputs** Connector: Front panel female SSMC Impedance: 50 ohms **L-Band Tuner** Type: Maxim MAX2121 Input Frequency Range: 925 MHz to 2175 MHz Monolithic VCO Phase Noise: -97 dBc/Hz at 10 kHz **Fractional-N PLL Synthesizer:** freqVCO = $(N.F.) \times freq_{REF}$ where integer N = 19 to 251 and fractional F is a 20-bit binary value **PLL Reference (freq**_{REF}): Front panel SSMC connector or on-board 27 MHz crystal (Option -100), 12 to 30 MHz **LNA Gain:** 60 dB range, controlled by a programmable 12-bit D/A converter **Usable Full-Scale Input Range:** -50 dBm to +10 dBm **Baseband Low Pass Filter:** 3 dB cutoff frequency: 123.75 MHz A/D Converters **Type:** Texas Instruments ADS5474 **Sampling Rate:** 10 MHz to 400 MHz **Resolution:** 14 bits **Sample Clock Sources** On-board timing generator/synthesizer A/D Clock Synthesizer **Clock Source:** Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus **Synchronization:** VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock **Timing Generator External Clock Input** **Type:** Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 200 MHz (up to 800 MHz when Timing Generator divider is enabled) or PLL system reference #### **Timing Generator Bus** 26-pin front panel connector LVPECL bus includes, clock/ sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/ PPS inputs #### **External Trigger Input** **Quantity: 2** **Type:** Front panel female SSMC connector, LVTTL **Function:** Programmable functions include: trig- ger, gate, sync and PPS #### **Field Programmable Gate Array** Standard: Xilinx Kintex UltraScale XCKU035-2 Option -084: Xilinx Kintex UltraScale XCKU060-2 Option -087: Xilinx Kintex UltraScale XCKU115-2 Custom I/O **Option -104:** provides 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** provides an 8X gigabit link between the FPGA and the VPX P1 connector to support serial protocols (gigabit link is 4X when combined with option 109) **Option -109:** VITA 66.5 interface provides optical 4X duplex lanes #### Memory #### **Processing System:** **Type:** DDR4 SDRAM **Size:** 5 GB each **Speed:** 1200 MHz (2400 MHz DDR) ## **PCI-Express Interface** PCI Express Bus: PCI Express Bus: Gen. 1, 2 or 3: x8 #### **OpenVPX Profile** The 54891 is compatible with multiple OpenVPX profiles. Profile for standard and option 109 shown below. * not connected on board #### **Environmental** #### Standard: L0 (air-cooled) Operating Temp: 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, non-condensing # Option -702: L2 (air-cooled) Operating Temp: -20° to 65° C Storage Temp: -40° to 100° C Relative Humidity: 0 to 95%, non-condensing #### Option -763: L3 (conduction-cooled) Operating Temp: -40° to 70° C Storage Temp: -50° to 100° C Relative Humidity: 0 to 95%, non-condensing #### **Physical** **Dimensions:** 3U VPX board **Depth:** 170.61 mm (6.717 in) **Height:** 100 mm (3.937 in Weight: Approximately 15.9 oz (450 grams) ## **Ordering Information** | Model | Description | |-------|--| | 54891 | L-Band RF Tuner with 2-Channel 400 MHz A/D with DDCs and Kintex UltraScale FPGA - 3U VPX | | Options | Description | | |---------------|---|--| | -014 | 400 MHz, 14-bit A/Ds | | | -084 | XCKU060-2 FPGA | | | -087 | XCKU115-2 FPGA | | | -100 | 27 MHz crystal for MAX2121 | | | -104 | LVDS FPGA I/O through VPX P2 | | | -105 | Gigabit serial FPGA I/O through VPX P1 | | | -109 | VITA 66.5: Optical 4X duplex lanes | | | -702 | Air-cooled, Level 2 | | | -763 | Conduction-cooled, Level 3 | | | Courts at Day | Contact Pontaly for compatible entire combinations, complete encifications of | | Contact Pentek for compatible option combinations, complete specifications of rugged and conduction-cooled versions. Storage and general options may change, contact Pentek for the latest information. # **Accessory Products** | Model | Description | |-------|---| | 2171 | Cable Kit: SSMC to SMA | | 9193 | System Synchronization and Distribution Amplifier | ## **SPARK Development Systems** The Pentek SPARK® systems are fully-integrated development systems for Pentek software radio, data acquisition, and I/O boards. They were created to save engineers and system integrators the time and expense associated with building and testing a development system. Each SPARK system is delivered with the Pentek board(s) and required software installed and equipped with sufficient cooling and power to ensure optimum performance. The following SPARK systems are available for Pentek's Cobalt[®], Onyx[®], and Jade[®] boards: PCIe (Model 8266), 3U OpenVPX (Model 8267) and 6U OpenVPX (Model 8264). For Flexor boards, SPARK systems are available in PCIe (Model 8266) and 3U VPX (Model 8267). ## **Pricing and Availability** To learn more about our products or to discuss your specific application please contact your local representative or Pentek directly: Pentek, Inc. One Park Way Upper Saddle River, NJ 07458 USA Tel: +1 (201) 818-5900 Email: sales@pentek.com ## **Lifetime Applications Support** Pentek offers the worldwide military embedded computing community shorter development time, reliable, rugged solutions for a variety of environments, reduced costs, and mature software development tools. We offer free lifetime support from our engineering staff, which customers can depend on through phone and email, as well as software updates. Take advantage of Pentek's 30 years of experience in delivering high-performance radar, communications, SIGINT, EW, and data acquisition MIL-Aero solutions worldwide.