

MODEL

DESCRIPTION

<u>Cobalt 71630</u>	1 GHz A/D and D/A, Virtex-6 FPGA - XMC
<u>Cobalt 78630</u>	1 GHz A/D and D/A, Virtex-6 FPGA - x8 PCIe
<u>Cobalt 53630</u>	1 GHz A/D and D/A, Virtex-6 FPGA - 3U VPX - Format 1
<u>Cobalt 52630</u>	1 GHz A/D and D/A, Virtex-6 FPGA - 3U VPX - Format 2
Cobalt 57630 & 58630	1-/2-Ch 1 GHz A/D and 1-/2-Ch 1 GHz D/A, Virtex-6 FPGA - 6U VPX
Cobalt 72630, 73630, 74630	1-/2-Ch 1 GHz A/D and 1-/2-Ch 1 GHz D/A, Virtex-6 FPGA - 6U/3U cPCI
<u>Cobalt 56630</u>	1 GHz A/D and D/A, Virtex-6 FPGA - AMC
<u>Cobalt 71640</u>	1-Ch 3.6 GHz or 2-Ch 1.8 GHz 12-bit A/D, Virtex-6 FPGA - XMC
<u>Cobalt 78640</u>	1-Ch 3.6 GHz or 2-Ch 1.8 GHz 12-bit A/D, Virtex-6 FPGA - x8 PCIe
<u>Cobalt 53640</u>	1-Ch 3.6 GHz or 2-Ch 1.8 GHz 12-bit A/D, Virtex-6 FPGA - 3U VPX - Format 1
Cobalt 52640	1-Ch 3.6 GHz or 2-Ch 1.8 GHz 12-bit A/D, Virtex-6 FPGA - 3U VPX - Format 2
Cobalt 57640 & 58640	1-/2-Ch 3.6 GHz or 2-/4-Ch 1.8 GHz 12-bit A/D, Virtex-6 FPGA - 6U VPX
Cobalt 72640, 73640, 74640	1-/2-Ch 3.6 GHz or 2-/4-Ch 1.8 GHz 12-bit A/D, Virtex-6 FPGA - 6U/3U cPCI
<u>Cobalt 56640</u>	1-Ch 3.6 GHz or 2-Ch 1.8 GHz 12-bit A/D, Virtex-6 FPGA - AMC
<u>Cobalt 71660</u>	4-Channel 200 MHz, 16-bit A/D, Virtex-6 FPGA - XMC
<u>Cobalt 78660</u>	4-Channel 200 MHz, 16-bit A/D, Virtex-6 FPGA - x8 PCIe
<u>Cobalt 53660</u>	4-Channel 200 MHz, 16-bit A/D, Virtex-6 FPGA - 3U VPX - Format 1
<u>Cobalt 52660</u>	4-Channel 200 MHz, 16-bit A/D, Virtex-6 FPGA - 3U VPX - Format 2
<u>Cobalt 57660 & 58660</u>	4-/8-Channel 200 MHz, 16-bit A/D, Virtex-6 FPGA - 6U VPX
<u>Cobalt 72660, 73660, 74660</u>	4-/8-Channel 200 MHz, 16-bit A/D, Virtex-6 FPGA - 6U/3U cPCI
<u>Cobalt 56660</u>	4-Channel 200 MHz, 16-bit A/D, Virtex-6 FPGA - AMC
<u>Cobalt 71663</u>	1100 GSM Channelizer with Quad A/D - XMC
<u>Cobalt 78663</u>	1100 GSM Channelizer with Quad A/D - x8 PCIe
<u>Cobalt 53663</u>	1100 GSM Channelizer with Quad A/D - 3U VPX - Format 1
<u>Cobalt 52663</u>	1100 GSM Channelizer with Quad A/D - 3U VPX - Format 2
Cobalt 57663 & 58663	1100/2200 GSM Channelizer with Quad/Octal A/D - 6U VPX
Cobalt 72663, 73663, 74663	1100/2200 GSM Channelizer with Quad/Octal A/D - 6U/3U cPCI
<u>Cobalt 56663</u>	1100 GSM Channelizer with Quad A/D - AMC
<u>Cobalt 71670</u>	4-Channel 1.25 GHz D/A with DUC, Virtex-6 FPGA - XMC
<u>Cobalt 78670</u>	4-Channel 1.25 GHz D/A with DUC, Virtex-6 FPGA - x8 PCIe
<u>Cobalt 53670</u>	4-Channel 1.25 GHz D/A with DUC, Virtex-6 FPGA - 3U VPX - Format 1
<u>Cobalt 52670</u>	4-Channel 1.25 GHz D/A with DUC, Virtex-6 FPGA - 3U VPX - Format 2
Cobalt 57670 & 58670	4-/8-Channel 1.25 GHz D/A with DUC, Virtex-6 FPGA - 6U VPX
Cobalt 72670, 73670, 74670	4-/8-Channel 1.25 GHz D/A with DUC, Virtex-6 FPGA - 6U/3U cPCI
<u>Cobalt 56670</u>	4-Channel 1.25 GHz D/A with DUC, Virtex-6 FPGA - AMC
<u>Cobalt 71690</u>	L-Band RF Tuner, 2-Channel 200 MHz A/D, Virtex-6 FPGA - XMC
<u>Cobalt 78690</u>	L-Band RF Tuner, 2-Channel 200 MHz A/D, Virtex-6 FPGA - x8 PCIe
<u>Cobalt 53690</u>	L-Band RF Tuner, 2-Channel 200 MHz A/D, Virtex-6 FPGA - 3U VPX - Format 1
<u>Cobalt 52690</u>	L-Band RF Tuner, 2-Channel 200 MHz A/D, Virtex-6 FPGA - 3U VPX - Format 2

Click Here for the PRODUCT SELECTOR

Last updated: April 2018 <u>More on next page</u> www.pentek.com

MODEL

DESCRIPTION

Cobalt 57690 & 58690 1-/2-Ch L-Band RF Tuner, 2-/4-Ch 200 MHz A/D, Virtex-6 FPGA - 6U VPX 1-/2-Ch L-Band RF Tuner, 2-/4-Ch 200 MHz A/D, Virtex-6 FPGA - 6U/3U cPCI Cobalt 72690, 73690, 74690 L-Band RF Tuner, 2-Channel 200 MHz A/D, Virtex-6 FPGA - AMC Cobalt 56690 <u>Onyx 71760</u> 4-Channel 200 MHz, 16-bit A/D, Virtex-7 FPGA - XMC <u>Onyx 78760</u> 4-Channel 200 MHz, 16-bit A/D, Virtex-7 FPGA - x8 PCIe 4-Channel 200 MHz, 16-bit A/D, Virtex-7 FPGA - 3U VPX - Format 1 <u>Onyx 53760</u> 4-Channel 200 MHz, 16-bit A/D, Virtex-7 FPGA - 3U VPX - Format 2 Onyx 52760 4-/8-Channel 200 MHz, 16-bit A/D, Virtex-7 FPGA - 6U VPX Onyx 57760 & 58760 <u>Onyx 72760, 73760, 74760</u> 4-/8-Channel 200 MHz, 16-bit A/D, Virtex-7 FPGA - 6U/3U cPCI Onyx 56760 4-Channel 200 MHz, 16-bit A/D, Virtex-7 FPGA - AMC Onyx 71730 1 GHz A/D and D/A, Virtex-7 FPGA - XMC 1 GHz A/D and D/A, Virtex-7 FPGA - x8 PCIe <u>Onyx 78730</u> 1 GHz A/D and D/A, Virtex-7 FPGA - 3U VPX - Format 1 <u>Onyx 53730</u> 1 GHz A/D and D/A, Virtex-7 FPGA - 3U VPX - Format 2 Onyx 52730 1-/2-Ch 1 GHz A/D and 1-/2-Ch 1 GHz D/A, Virtex-7 FPGAs - 6U VPX <u>Onyx 57730 & 58730</u> 1-/2-Ch 1 GHz A/D and 1-/2-Ch 1 GHz D/A, Virtex-7 FPGAs - 6U/3U cPCI <u>Onyx 72730, 73730, 74730</u> 1 GHz A/D and D/A, Virtex-7 FPGA - AMC <u>Onyx 56730</u> <u>Onyx 71741</u> 1-Channel 3.6 GHz or 2-Channel 1.8 GHz, 12-bit A/D, DDC, Virtex-7 FPGA - XMC 1-Channel 3.6 GHz or 2-Channel 1.8 GHz, 12-bit A/D, DDC, Virtex-7 FPGA - x8 PCIe <u>Onyx 78741</u> 1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, DDC, Virtex-7 FPGA - 3U VPX - Format 1 <u>Onyx 53741</u> 1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, DDC, Virtex-7 FPGA - 3U VPX - Format 2 Onyx 52741 1/2-Ch. 3.6 GHz or 2/4-Ch. 1.8 GHz, 12-bit A/D, DDC, Virtex-7 FPGA - 6U VPX Onyx 57741 & 58741 1/2-Ch. 3.6 GHz or 2/4-Ch. 1.8 GHz, 12-bit A/D, DDC, Virtex-7 FPGA - 6U/3U cPCI <u>Onyx 72741, 73741, 74741</u> 1-Channel 3.6 GHz or 2-Channel 1.8 GHz, 12-bit A/D, DDC, Virtex-7 FPGA - AMC <u>Onyx 56741</u> Cobalt 71610 LVDS Digital I/O with Virtex-6 FPGA - XMC LVDS Digital I/O with Virtex-6 FPGA - x8 PCIe Cobalt 78610 Cobalt 53610 LVDS Digital I/O with Virtex-6 FPGA - 3U VPX - Format 1 Cobalt 52610 LVDS Digital I/O with Virtex-6 FPGA - 3U VPX - Format 2 Single or Dual LVDS Digital I/O with Virtex-6 FPGAs - 6U VPX Cobalt 57610 & 58610 Cobalt 72610, 73610, 74610 Single or Dual LVDS Digital I/O with Virtex-6 FPGAs - 6U/3U cPCI LVDS Digital I/O with Virtex-6 FPGA - AMC Cobalt 56610 Cobalt 7811 Quad Serial FPDP Interface with Virtex-6 FPGA - x8 PCIe Quad Serial FPDP Interface with Virtex-6 FPGA - XMC Cobalt 71611 Ouad Serial FPDP Interface with Virtex-6 FPGA - x8 PCIe Cobalt 78611 Quad Serial FPDP Interface with Virtex-6 FPGA - 3U VPX - Format 1 Cobalt 53611 Cobalt 52611 Quad Serial FPDP Interface with Virtex-6 FPGA - 3U VPX - Format 2 Quad or Octal Serial FPDP Interface with Virtex-6 FPGAs - 6U VPX Cobalt 57611 & 58611 Cobalt 72611, 73611, 74611 Quad or Octal Serial FPDP Interface with Virtex-6 FPGAs - 6U/3U cPCI Quad Serial FPDP Interface with Virtex-6 FPGA - AMC Cobalt 56611

Click Here for the PRODUCT SELECTOR

Last updated: April 2017 <u>More on next page</u> www.pentek.com

MODEL

DESCRIPTION

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex FPGA - XMC Jade 71141 Jade 78141 1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex FPGA - x8 PCIe Jade 53141 1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex FPGA - 3U VPX 1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex FPGA - 3U VPX Jade 52141 Jade 57141 & 58141 1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex FPGA - 6U VPX Jade 72141, 73141, 74141 1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex FPGA - 6U/3U cPCI Jade 56141 1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex FPGA - AMC Flexor 5973 Virtex-7 Processor and FMC Carrier - 3U VPX Flexor 5983 Kintex UltraScale Processor and FMC Carrier - 3U VPX Flexor 7070 Virtex-7 Processor and FMC Carrier - x8 PCIe Flexor 3312 4-Channel 250 MHz, 16-bit A/D, 2-Channel 800 MHz, 16-bit D/A - FMC FlexorSet 5973-312 4-Channel 250 MHz 16-bit A/D, 2-Channel800 MHz 16-bit D/A - 3U VPX Kintex 4-Channel 250 MHz 16-bit A/D, 2-Channel 800 MHz 16-bit D/A - 3U VPX FlexorSet 5983-313 FlexorSet 7070-312 4-Channel 250 MHz 16-bit A/D, 2-Channel800 MHz 16-bit D/A - x8 PCIe 8-Channel 250 MHz, 16-bit A/D - FMC Flexor 3316 FlexorSet 5973-316 8-Channel 250 MHz 16-bit A/D with Virtex-7 FPGA - 3U VPX FlexorSet 5983-317 Kintex 4-Channel 250 MHz 16-bit A/D, with DDCs, 2-Channel 800 MHz 16-bit D/A - 3U VPX FlexorSet 7070-316 8-Channel 250 MHz 16-bit A/D with Virtex-7 FPGA - x8 PCIe 2-Channel 3.0 GHz A/D, 2-Channel 2.8 GHz D/A wth Virtex-7 - FMC Flexor 3320 FlexorSet 5973-320 2-Channel 3.0 GHz A/D, 2-Channel 2.8 GHz D/A wth Virtex-7 - 3U VPX FLexorSet 5983-320 Kintex 4-Channel 250 MHz 16-bit A/D, 2-Channel 800 MHz 16-bit D/A - 3U VPX FlexorSet 7070-320 2-Channel 3.0 GHz A/D, 2-Channel 2.8 GHz D/A wth Virtex-7 - x8 PCIe Flexor 3324 4-Channel 500 MHz, 16-bit A/D, 4-Channel 1.5 GHz, 16-bit D/A - FMC FlexorSet 5973-324 4-Channel 500 MHz, 16-bit A/D, 4-Channel 1.5 GHz, 16-bit D/A - 3U VPX FlexorSet 5983-324 Kintex 4-Channel 250 MHz 16-bit A/D, 2-Channel 800 MHz 16-bit D/A - 3U VPX FlexorSet 7070-324 4-Channel 500 MHz, 16-bit A/D, 4-Channel 1.5 GHz, 16-bit D/A - x8 PCIe Bandit 7120 Two-Channel Analog RF Wideband Downconverter - PMC/XMC Bandit 7820 Two-Channel Analog RF Wideband Downconverter - PCIe Bandit 5220 Two-Channel Analog RF Wideband Downconverter - 3U VPX Bandit 5720 & 5820 Two- or Four-Channel Analog RF Wideband Downconverter - 6U OpenVPX Bandit 7220, 7320, 7420 Two- or Four-Channel Analog RF Wideband Downconverter - 6U/3U cPCI Bandit 5620 Two-Channel Analog RF Wideband Downconverter - AMC Bandit 8111 Modular Analog RF Slot Downconverter Series 8264 6U OpenVPX Development System for Cobalt and Onyx Boards 8266 PC Development System for PCIe Cobalt and Onyx Boards 8267 3U VPX Development System for Cobalt, Onyx and Flexor Boards **Customer Information**

Click Here for the PRODUCT SELECTOR

Last updated: April 2018

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- Up to 2 GB of DDR3 SDRAM or 16 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 71630 is a member of the Cobalt[®] family of high performance XMC modules based on the Xilinx Virtex-6 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

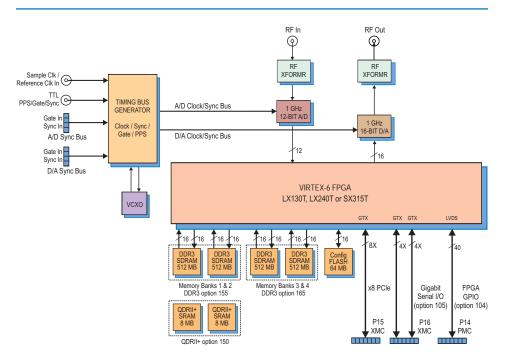
It includes 1 GHz A/D and D/A converters and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 71630 includes optional general purpose and gigabit serial card connectors for application-specific I/O.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 71630 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module. In addition, IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 71630 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs the P14 PMC connector with 20 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with one 8X or two 4X gigabit links to the FPGA to support serial protocols.

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

The 71630 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 71630 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. A linkedlist controller allows users to easily play back waveforms stored in either on-board memory or off-board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

D/A Converter Stage

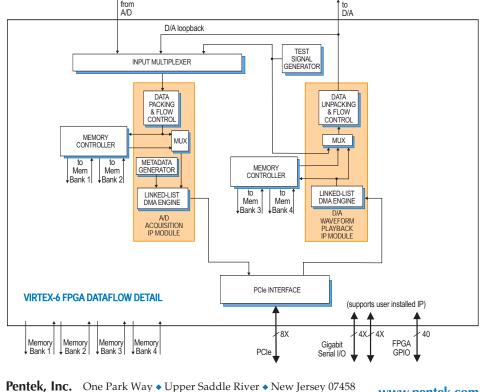
The 71630 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GSPS, allowing it to acept full rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through a front panel SSMC connector.

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.

A pair of front panel μ Sync connectors allows multiple modules to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.


The Pentek Model 7192 and Model 9192 Cobalt Synchronizers can drive multiple 71630 µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The 71630 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory. Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deep memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. >

www.pentek.com

Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards (Models 78xxx). It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
71630	1 GHz A/D and D/A,
	Virtex-6 FPGA - XMC
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O through
	P14 connector
-105	Gigabit serial FPGA I/O
	through P16 connector
-150	Two 8 MB QDRII+ SRAM
	Memory Banks
	(Banks 1 and 2)
-155	Two 512 MB DDR3
	SDRAM Memory Banks
	(Banks 1 and 2)
-165	Two 512 MB DDR3
	SDRAM Memory Banks
	(Banks 3 and 4)
* This option is always required	

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description 8266 PC Developmen

8266 PC Development System See 8266 Datasheet for Options

► XMC Interface

The Model 71630 complies with the VITA 42.0 XMC specification. Two connectors each provide dual 4X links or a single 8X link with up to a 6 GHz bit clock. With dual XMC connectors, the 71630 supports x8 PCIe on the first XMC connector leaving the second connector free to support user-installed transfer protocols specific to the target application.

PCI Express Interface

The Model 71630 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits **D/A Converter** Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. **Interpolation Filter:** bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources: On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer Clock Source: Selectable from on-board programmable VCXO or front panel external clock VCXO Frequency Ranges: 10 to 945

MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2 Custom I/O

Option -104: Installs the PMC P14 connector with 20 LVDS pairs to the FPGA **Option -105:** Installs the XMC P16 connector configurable as one 8X or two 4X gigabit serial links to the FPGA

Memory

Option 150: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen.1: x4 or x8; Gen 2: x4

Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Standard XMC module, 2.91 in. x 5.87 in.

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- Up to 2 GB of DDR3 SDRAM or 16 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 78630 is a member of the Cobalt[®] family of high performance PCIe boards based on the Xilinx Virtex-6 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

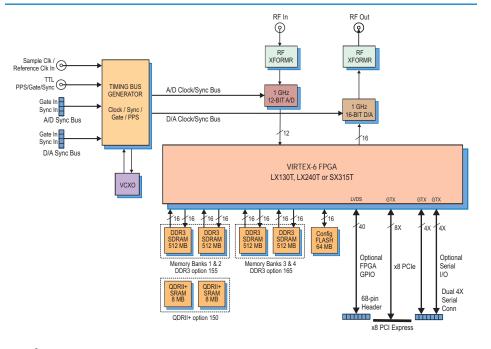
It includes 1 GHz A/D and 1 GHz D/A converters and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 78630 includes optional general-purpose and gigabit serial card connectors for application specific I/O protocols.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory installed applications ideally matched to the board's analog interfaces. The 78630 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module. In addition, IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 78630 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105 connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201-818-5900
Fax: 201-818-5904
Email: info@pentek.com

The 78630 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 78630 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. A linkedlist controller allows users to easily play back waveforms stored in either on-board memory or off- board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other board resources.

D/A Converter Stage

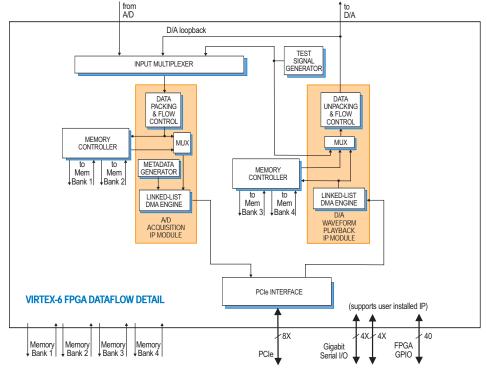
The 78630 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GSPS, allowing it to acept full rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through a front panel SSMC connector.

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.

A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.


The Pentek Model 7892 and Model 9192 Cobalt Synchronizers can drive multiple 78630 µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The 78630 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory. Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deep memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. >

www.pentek.com

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458

Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Model 8266 The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	-	
Model	Description	
78630	1 GHz A/D and D/A,	
	Virtex-6 FPGA - x8 PCIe	
Options:		
-002*	-2 FPGA speed grade	
-062	XC6VLX240T	
-064	XC6VSX315T	
-104	LVDS FPGA I/O through 68-pin ribbon cable connector	
-105	Gigabit serial FPGA I/O through two 4X top edge connectors	
-150	Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)	
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)	
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)	
* This option is always required		

* This option is always required

Model Description

8266 PC Development System See 8266 Datasheet for Options

PCI Express Interface

The Model 78630 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors

A/D Converter Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits

D/A Converter Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max.

Resolution: 16 bits Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources: On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin μSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2, or XC6VSX315T-2

Custom I/O

Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O. **Option -105:** Connects two 4X gigabit

serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board

Memory

Option 150: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR **Option 155 or 165:** Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen.1: x4 or x8 Gen. 2: x4

Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Half length PCIe card, 4.38 in. x 7.13 in.

Model 53630 COTS (left) and rugged version

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Supports gigabit serial fabrics including PCI Express, Serial RapidIO and Xilinx Aurora
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- Up to 2 GB of DDR3 SDRAM or 16 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 53630 is a member of the Cobalt[®] family of high performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution.

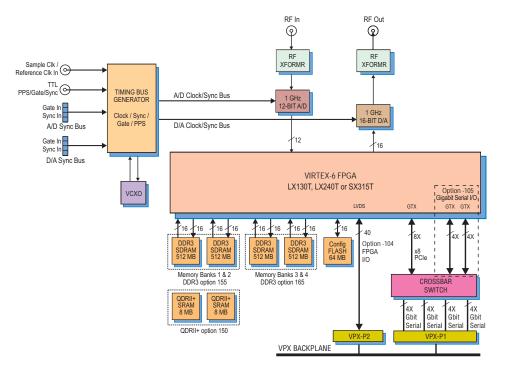
It includes 1 GHz A/D and D/A converters and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 53630 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module. In addition, IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 53630 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201-818-5900
Fax: 201-818-5904
Email: info@pentek.com

The 53630 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 53630 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. A linkedlist controller allows users to easily play back waveforms stored in either on-board memory or off- board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

► A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

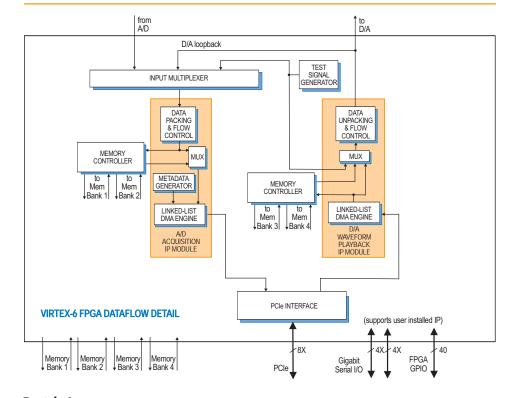
D/A Converter Stage

The 53630 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GSPS, allowing it to acept full rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through a front panel SSMC connector.

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.


A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 5392 and Model 9192 Cobalt Synchronizers can drive multiple 53630 µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The 53630 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory. Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deep memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. >

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

0
Description
1 GHz A/D and D/A, Virtex-6 FPGA - 3U VPX
-2 FPGA speed grade
XC6VLX240T FPGA
XC6VSX315T FPGA
LVDS FPGA I/O to VPX P2

- -105 Gigabit serial FPGA I/O to VPX P1
 -150 Two 8 MB QDRII+ SRAM
- Memory Banks (Banks 1 and 2)
- -155 Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
- -165 Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

* This option is always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8267 VPX Development System. See 8267 Datasheet for Options

► PCI Express Interface

The Model 53630 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Fabric-Transparent Crossbar Switch

The 53630 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency. Programmable signal input equalization and output pre-emphasis settings enable optimization. Data paths can be selected as single (1X) lanes, or groups of four lanes (4X).

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors
A/D Converter Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits
D/A Converter

Type: Texas Instruments DAC5681Z **Input Data Rate:** 1 GHz max. **Interpolation Filter:** bypass, 2x or 4x **Output Sampling Rate:** 1 GHz max. **Resolution:** 16 bits

Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel female SSMC connectors Sample Clock Sources: On-board clock

synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A

clock External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory

Option 150: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen.1: x4 or x8; Gen 2: x4

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C **Relative Humidity:** 0 to 95%, non-cond.

Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 53xxx and the 52xxx. For more information on a 52xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

		•
	52xxx	53xxx
Form Factor	3U '	VPX
# of XMCs	One	XMC
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs c	n VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Model 52630 COTS (left) and rugged version

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Supports gigabit serial fabrics including PCI Express, Serial RapidIO and Xilinx Aurora
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- Up to 2 GB of DDR3 SDRAM or 16 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 52630 is a member of the Cobalt[®] family of high performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution.

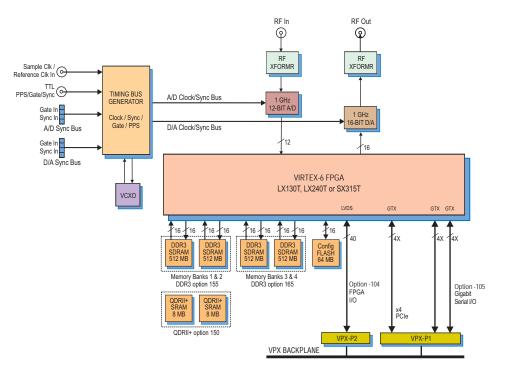
It includes 1 GHz A/D and D/A converters and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 52630 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module. In addition, IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 52630 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201.818.5900
Fax: 201.818.5904
Email: info@pentek.com

The 52630 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 52630 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. A linkedlist controller allows users to easily play back waveforms stored in either on-board memory or off-board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

PENTE

A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

D/A Converter Stage

The 52630 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GSPS, allowing it to acept full rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4rate input data. Analog output is through a front panel SSMC connector.

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO.

Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.


A pair of front panel µSync connectors allows multiple modules to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 5292 and Model 9192 Cobalt Synchronizers can drive multiple 52630 µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The 52630 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory. Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deep memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. >

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

www.pentek.com

1 GHz A/D and D/A, Virtex-6 FPGA - 3U VPX

► PCI Express Interface

The Model 52630 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x4, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors

A/D Converter Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits

D/A Converter

Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits

Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources: On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A (D clock and D (A

pendently for the A/D clock and D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory

Option 150: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen 2: x4 Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	•	
	52xxx	53xxx
Form Factor	3U V	VPX
# of XMCs	One	XMC
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs o	n VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

<u>Model 8267</u>

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	•
Model	Description
52630	1 GHz A/D and D/A,
	Virtex-6 FPGA - 3U VPX
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1
-150	Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

* This option is always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8267 VPX Development System. See 8267 Datasheet for Options

Models 57630 & 58630

1- or 2-Channel 1 GHz A/D, 1- or 2-Channel 1 GHz D/A with Virtex-6 FPGA - 6U OpenVPX

Model 58630

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One or two 1 GHz 12-bit A/D
- One or two 1 GHz 16-bit D/A
- Up to 2 or 4 GB of DDR3 SDRAM; or: 16 MB or 32 MB of QDRII+ SRAM
- PCI Express (Gen. 1 & 2) interface up to x8
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- Ruggedized and conductioncooled versions available

General Information

Models 57630 and 58630 are members of the Cobalt[®] family of high-performance 6U OpenVPX boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71630 XMC modules mounted on a VPX carrier board.

Model 57630 is a 6U board with one Model 71630 module while the Model 58630 is a 6U board with two XMC modules rather than one.

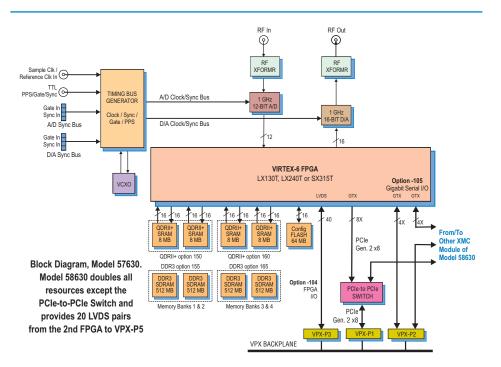
These models include one or two 1 GHz A/D and D/A converters and four or eight banks of memory

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions of these models include one or two A/D acquisition and one or two D/A waveform playback IP modules. IP modules for either DDR3 or QDRII+ memories, controllers for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57630; P3 and P5, Model 58630.

Option -105 supports serial protocalls by providing a 4X gigabit link between the FPGA and VPX P2, Model 57630; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58630. >

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904

Email: info@pentek.com

Models 57630 & 58630

1- or 2-Channel 1 GHz A/D, 1- or 2-Channel 1 GHz D/A with Virtex-6 FPGA - 6U OpenVPX

A/D Acquisition IP Module

These models feature one or two A/D Acquisition IP Modules for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Modules

The factory-installed functions include one or two sophisticated D/A Waveform Playback IP modules. A linked-list controller allows users to easily play back waveforms stored in either on-board memory or offboard host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 or 128 individual link entries can be chained together to create complex waveforms with a minimum of programming.

► A/D Converter Stage

The front end accepts one or two analog HF or IF inputs on front panel SSMC connectors with transformer coupling into one or two Texas Instruments ADS5400 1 GHz, 12-bit A/D converters.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

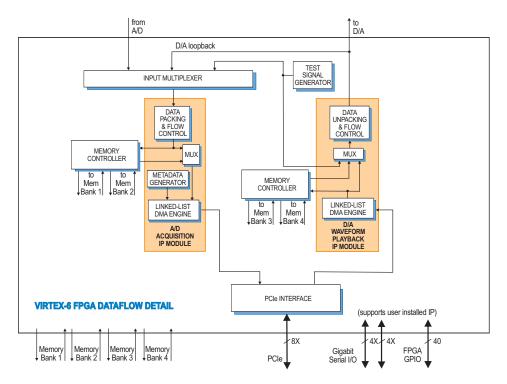
D/A Converter Stage

The 71630 features one or two TI DAC5681Z 1 GHz, 16-bit D/As. The converters have an input sample rate of 1 GSPS, allowing them to acept full rate data from the FPGA. Additionally, the D/As include a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through front panel SSMC connectors.

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.


A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 9192 Cobalt Synchronizer can drive multiple µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The Cobalt architecture supports up to four or eight independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory. Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deep memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. >

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201818:5900 Fax: 201818:5904 Email: info@pentek.com

Model 8264

The Model 8264 is a fullyintegrated development system for Pentek Cobalt and Onyx 6U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description	
57630	1 GHz A/D and D/A with Virtex-6 FPGA - 6U VPX	
58630	Two 1 GHz A/D and D/A, with two Virtex-6 FPGAs - 6U VPX	
Options:		
-002*	-2 FPGA speed grade	
-062	XC6VLX240T FPGA	
-064	XC6VSX315T FPGA	
-104	LVDS I/O between the FPGA and P3 connector, Model 57630; P3 and P5 connectors, Model 58630	
-105	Gigabit link between the FPGA and P2 connector, Model 57630; gigabit links from each FPGA to P2 connector, Model 78630	
-160	Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4)	
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)	
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)	
* This option is always required		

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8264 VPX Development System. See 8264 Datasheet for Options

1- or 2-Channel 1 GHz A/D, 1- or 2-Channel 1 GHz D/A with Virtex-6 FPGA - 6U OpenVPX

► PCI Express Interface

These models include an industrystandard interface fully compliant with PCI Express Gen. 1 and 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Specifications

Model 57630: 1 A/D, 1 D/A Model 58630: 2 A/Ds, 2 D/As Front Panel Analog Signal Inputs (1 or 2) Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converters (1 or 2) Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits D/A Converters (1 or 2) Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits

Front Panel Analog Signal Outputs (1 or 2) Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources (1 or 2) On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizers (1 or 2) Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO

can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock

External Clocks (1 or 2)

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus (1 or 2): 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input (1 or 2) Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57630; P3 and P5, Model 58630

Option -105: Supports serial protocols by providing a 4X gigabit link between the FPGA and VPX P2, Model 57630; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58630

Memory Banks (1 or 2) Option 150: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or 2: x4 or x8 Environmental: Level L1 & L2 air-cooled; Level L3 ruggedized, conduction-cooled Size: 3.937 in. x6.717 in. (100 mm x 170.6 mm)

Model 74630 Model 73630

General Information

Models 72630, 73630 and 74630 are members of the Cobalt® family of high performance CompactPCI boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71630 XMC modules mounted on a cPCI carrier board.

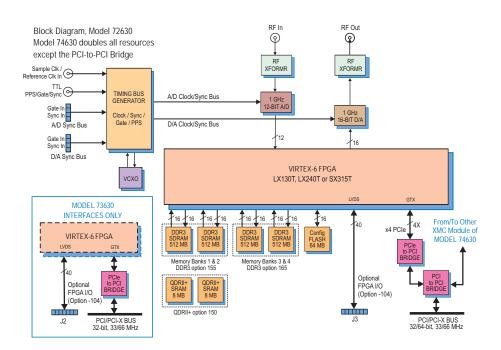
Model 72630 is a 6U cPCI board while the Model 73630 is a 3U cPCI board; both are equipped with one Model 71630 XMC. Model 74630 is a 6U cPCI board with two XMC modules rather than one.

These models include one or two 1 GHz A/D and D/A converters and four or eight banks of memory

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions of these models include one or two A/D acquisition and one or two D/A waveform playback IP module. IP modules for either DDR3 or QDRII+ memories, controllers for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable these modles to operate as complete turnkey solutions, without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73630; J3 connector, Model 72630; J3 and J5 connectors, Model 74630. >

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One or two 1 GHz 12-bit A/D
- One or two 1 GHz 16-bit D/A
- Up to 2 or 4 GB of DDR3 SDRAM; or: 16 MB or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

PENTEK

Pentek, Inc. One Park Way & Upper Saddle River

New Jersey 07458
Tel: 201/818/5900

Fax: 201/818/5904

Email: info@pentek.com

Models 72630, 73630 and 74630

A/D Acquisition IP Module

These models feature one or two A/D Acquisition IP Modules for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Modules

The factory-installed functions include one or two sophisticated D/A Waveform Playback IP modules. A linked-list controller allows users to easily play back waveforms stored in either on-board memory or offboard host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 or 128 individual link entries can be chained together to create complex waveforms with a minimum of programming.

► A/D Converter Stage

The front end accepts one or two analog HF or IF input on front panel SSMC connectors with transformer coupling into one or two Texas Instruments ADS5400 1 GHz, 12-bit A/D converters.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

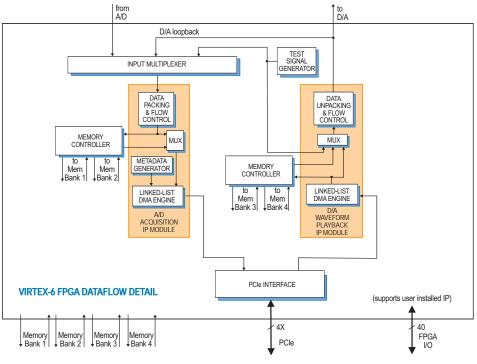
D/A Converter Stage

The 71630 features one or two TI DAC5681Z 1 GHz, 16-bit D/As. The converters have an input sample rate of 1 GSPS, allowing them to acept full rate data from the FPGA. Additionally, the D/As include a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through front panel SSMC connectors.

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.


A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 7292 and Model 9192 Cobalt Synchronizers can drive multiple µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The Cobalt architecture supports up to four or eight independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory. Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deep memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

1- or 2-Channel 1 GHz A/D, 1- or 2-Channel 1 GHz D/A with Virtex-6 FPGA - cPCI

► PCI-X Interface

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported. Model 73630: 32 bits only.

Specifications

Model 72630 or Model 73630: 1 A/D, 1 D/A Model 74630: 2 A/Ds, 2 D/As Front Panel Analog Signal Inputs (1 or 2) Input Type: Transformer-coupled, front panel female SSMC connectors

A/D Converters (1 or 2) Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits

D/A Converters (1 or 2) Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits

Front Panel Analog Signal Outputs (1 or 2) Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources (1 or 2) On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizers (1 or 2)

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock

External Clocks (1 or 2)

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73630; J3 connector, Model 72630; J3 and J5 connectors, Model 74630

Memory Banks (1 or 2) Option 150: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR PCI-X Interface

PCI-X Bus: 32 or 64 bits at 33 or 66 MHz Model 73630: 32 bits only

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C **Relative Humidity:** 0 to 95%, non-cond. **Size:** Standard 6U or 3U cPCI board

Ordering Information

	0
Model	Description
72630	1 GHz A/D and D/A,
	Virtex-6 FPGA - 6U cPCI
73630	1 GHz A/D and D/A,
	Virtex-6 FPGA - 3U cPCI
74630	Two 1 GHz A/D and D/A,
	Virtex-6 FPGA - 6U cPCI
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS I/O between the
	FPGA and J2 connector,
	Model 73630; J3 connector,
	Model 72630; J3 and J5 connectors, Model 74630
-160	Two 8 MB QDRII+
100	SRAM Memory Banks
	(Banks 3 and 4)
-155	Two 512 MB DDR3
	SDRAM Memory Banks
	(Banks 1 and 2)
-165	Two 512 MB DDR3
	SDRAM Memory Banks

* This option is always required

(Banks 3 and 4)

 Pentek, Inc.
 One Park Way

 Upper Saddle River
 New Jersey 07458
 Tel: 201·818·5900
 Fax: 201·818·5904
 Email: info@pentek.com

www.pentek.com

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- Up to 2 GB of DDR3 SDRAM or 16 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- AMC.1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)
- Optional front panel LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

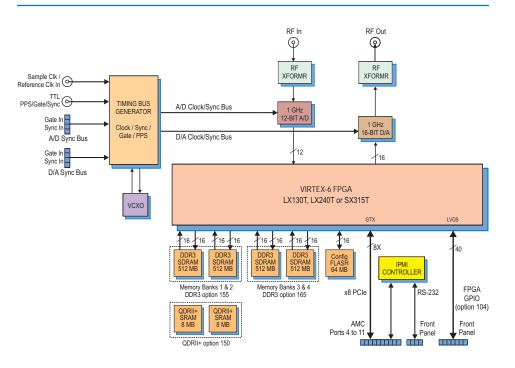
Model 56630 is a member of the Cobalt[®] family of high performance AMC modules based on the Xilinx Virtex-6 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes 1 GHz A/D and D/A converters and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 56630 includes a front panel general-purpose connector for application-specific I/O.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 56630 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module. In addition, IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 56630 to operate as a complete turnkey solution, without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs a front panel connector with 20 pairs of LVDS connections to the FPGA for custom I/O. >

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201818:5900 Fax: 201818:5904 Email: info@pentek.com

The 56630 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 56630 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. A linkedlist controller allows users to easily play back waveforms stored in either on-board memory or off- board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

► A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

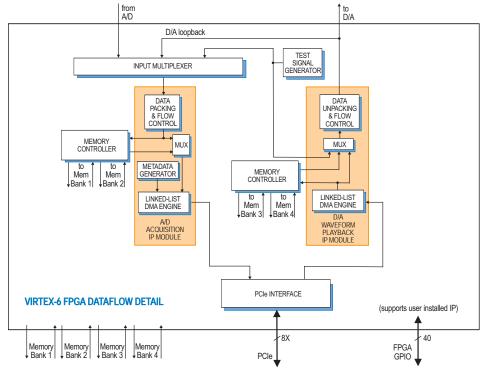
D/A Converter Stage

The 56630 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GSPS, allowing it to acept full rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through a front panel SSMC connector.

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.


A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 5692 and Model 9192 Cobalt Synchronizers can drive multiple 53730 µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The 56630 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory. Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deep memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. >

 Pentek, Inc.
 One Park Way

 Upper Saddle River
 New Jersey 07458

 Tel: 201·818·5900

 Fax: 201·818·5904
 Email: info@pentek.com

www.pentek.com

► AMC Interface

The Model 56630 complies with the AMC.1 specification by providing an x8 PCIe connection to AdvancedTCA carriers or μ TCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller).

PCI Express Interface

The Model 56630 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz **Resolution:** 12 bits D/A Converter **Type:** Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel female SSMC connectors Sample Clock Sources: On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Installs a front panel connector with 20 LVDS pairs to the FPGA

Memory

Option 150: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen.1: x4 or x8; Gen 2: x4

AMC Interface

Type: AMC.1

Module Management: IPMI Version 2.0 Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C **Relative Humidity:** 0 to 95%, non-cond.

Size: Single-width, full-height AMC module, 2.89 in. x 7.11 in.

Ordering Information

	0
Model	Description
56630	1 GHz A/D and D/A, Virtex-6 FPGA - AMC
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O through
	front panel connector
-150	Two 8 MB QDRII+
	SRAM Memory Banks (Banks 1 and 2)
-155	Two 512 MB DDR3
-155	SDRAM Memory Banks
	(Banks 1 and 2)
-165	Two 512 MB DDR3
	SDRAM Memory Banks
	(Banks 3 and 4)

* This option is always required

Contact Pentek for availability of rugged and conduction-cooled versions

 Pentek, Inc.
 One Park Way

 Upper Saddle River
 New Jersey 07458

 Tel: 201.818:5900

 Fax: 201.818:5904
 Email: info@pentek.com

www.pentek.com

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- 2 GB of DDR3 SDRAM
- Sync bus for multimodule synchronization
- PCI Express Gen. 2 interface x8 wide
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 71640 is a member of the Cobalt[®] family of high performance XMC modules based on the Xilinx Virtex-6 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

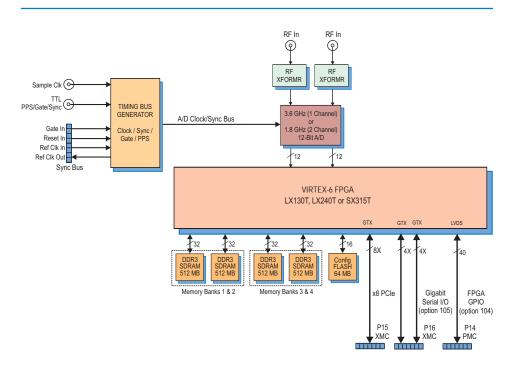
It includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 71640 includes optional general purpose and gigabit serial connectors for application-specific I/O.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 71640 factory-installed functions include an A/D acquisition IP module. In addition, IP modules for DDR3 memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factoryinstalled functions and enable the 71640 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs the P14 PMC connector with 20 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with dual 4X gigabit links to the FPGA to support other serial protocols. >>

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

The 71640 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

► A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

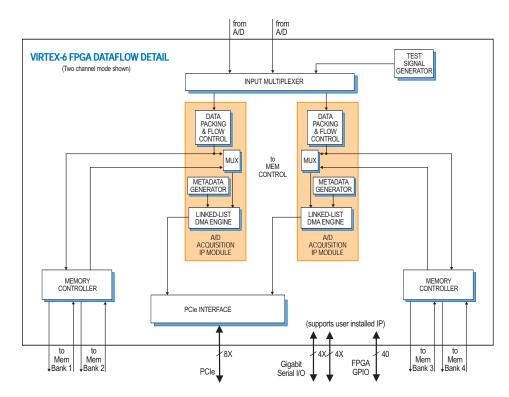
The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 71640 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple modules.

The A/D digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

Clocking and Synchronization

The 71640 accepts a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel multi-pin sync bus connector allows multiple modules to be synchronized, ideal for larger multichanel systems. The sync bus includes gate, reset and in and out reference clock signals. Multiple 71640s can be synchronized using the Cobalt high speed sync module to drive the sync bus.


Memory Resources

The 71640 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the module's DMA and data capture capabilities. Built-in memory functions include an A/D data transient capture mode for taking snapshots of data for transfer to a host computer.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

XMC Interface

The Model 71640 complies with the VITA 42.0 XMC specification. Two connectors each provide dual 4X links or a single 8X link with up to a 5 GHz bit clock. With dual XMC connectors, the 71640 supports x8 PCIe on the first XMC connector leaving the optional second connector free to support user-installed transfer protocols specific to the target application.

PCI Express Interface

The Model 71640 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. The x8 lane interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

clock

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter Type: Texas Instruments ADC12D1800 Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable Sample Clock Sources: Front panel SSMC connector Sync Bus: Multi-pin connectors, bus includes gate, reset and in and out ref

External Trigger Input

Type: Front panel female SSMC connector, TTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2, or XC6VSX315T-2

Custom I/O

Option -104: Installs the PMC P14 connector with 20 LVDS pairs to the FPGA

Option -105: Installs the XMC P16 connector configurable as one 8X or two 4X gigabit serial links to the FPGA

Memory: Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen. 2: x4 or x8

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Standard XMC module, 2.91 in. x 5.87 in.

<u>Model 8266</u>

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards (Models 78xxx). It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
71640	1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, Virtex-6 FPGA - XMC
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T
-064	XC6VSX315T
-104	LVDS FPGA I/O through P14 connector
-105	Gigabit serial FPGA I/O through P16 connector
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
* These options are always required	

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- 2 GB of DDR3 SDRAM
- Sync bus for multiboard synchronization
- PCI Express (Gen. 1 & 2) interface, up to x8
- Clock/sync bus for multiboard synchronization
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 78640 is a member of the Cobalt[®] family of high performance XMC modules based on the Xilinx Virtex-6 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

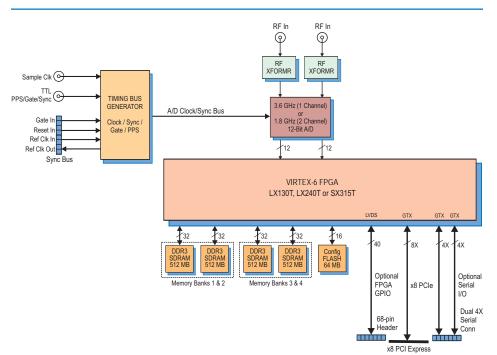
The 78640 includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 78640 includes optional general-purpose and gigabit serial connectors for application-specific I/O protocols.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 78640 factory-installed functions include an A/D acquisition IP module. In addition, IP modules for DDR3 memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factoryinstalled functions and enable the 78640 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105 connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board. \triangleright

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

The 78640 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

► A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 78640 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple boards.

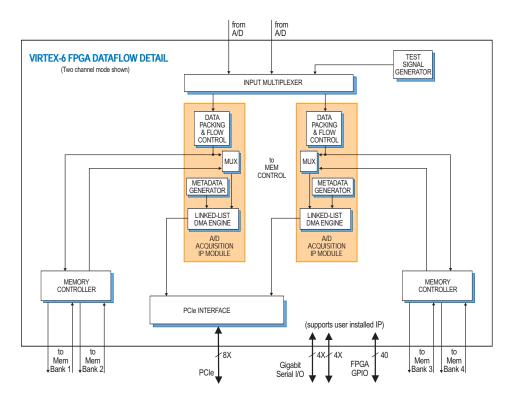
The A/D digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

Clocking and Synchronization

The 78640 accepts a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel multi-pin sync bus connector allows multiple boards to be

synchronized, ideal for larger multichanel systems. The sync bus includes gate, reset and in and out reference clock signals. Multiple 78640s can be synchronized using the Cobalt high speed sync board to drive the sync bus.


Memory Resources

The 78640 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the board's DMA and data capture capabilities. Built-in memory functions include an A/D data transient capture mode for taking snapshots of data for transfer to a host computer.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 78640 includes an industry standard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links of x4 or x8, the interface includes multiple DMA controllers for efficient transfers to and from the board. >

► Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors

A/D Converter

Type: Texas Instruments ADC12D1800 Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable

Sample Clock Sources: Front panel SSMC connector

Sync Bus: Multi-pin connectors, bus includes gate, reset and in and out ref clock

External Trigger Input

Type: Front panel female SSMC connector, TTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array

Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 XC6VSX315T-2

Custom I/O

Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105: Connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors

along the top edge of the PCIe board Memory: Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1or Gen. 2: x4 or x8

Environmental

- **Operating Temp:** 0° to 50° C
- **Storage Temp:** -20° to 90° C
- Relative Humidity: 0 to 95%, non-cond.
- Size: Half-length PCIe card, 4.38 in. x 7.13 in.

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	•	
Model	Description	
78640	1-Ch. 3.6 GHz or 2-Ch.	
	1.8 GHz, 12-bit A/D,	
	Virtex-6 FPGA - x8 PCIe	

Options:

- -002* -2 FPGA speed grade -062 XC6VLX240T FPGA -064 XC6VSX315T FPGA -104 LVDS FPGA I/O through 68-pin ribbon cable connector -105 Gigabit serial FPGA I/O through two 4X top edge connectors -155* Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2) -165* Two 512 MB DDR3
- SDRAM Memory Banks (Banks 3 and 4)
- * These options are always required

Model Description

8266 PC Development System See 8266 Datasheet for Options

Model 53640 COTS (left) and rugged version

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- 2 GB of DDR3 SDRAM
- Sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 53640 is a member of the Cobalt[®] family of high-performance XMC modules based on the Xilinx Virtex-6 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

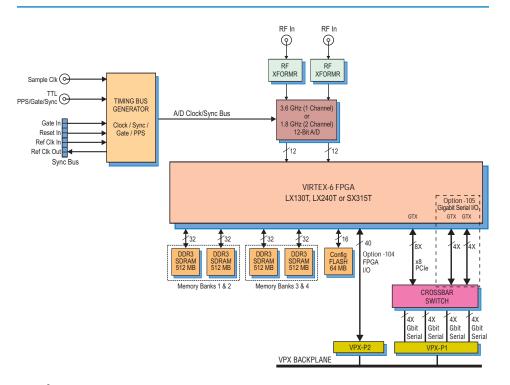
The 53640 includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 53640 factory-installed functions include an A/D acquisition IP module. In addition, IP modules for DDR3 memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factoryinstalled functions and enable the 53640 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides dual 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way & Upper Saddle River

New Jersey 07458
Tel: 201/818/5900

Fax: 201/818/5904

Email: info@pentek.com

The 53640 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

► A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 53640 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple boards.

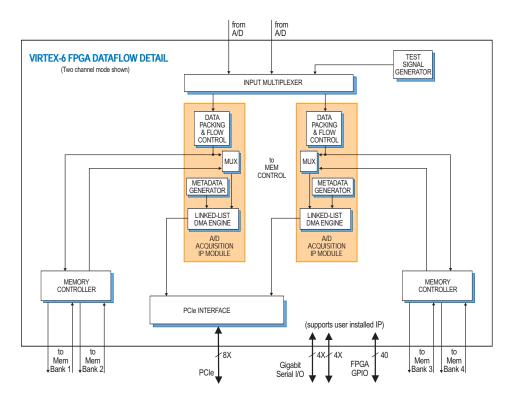
The A/D digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

Clocking and Synchronization

The 53640 accepts a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel multipin sync bus connector allows multiple boards to be

synchronized, ideal for larger multichanel systems. The sync bus includes gate, reset and in and out reference clock signals. Multiple 53640's can be synchronized using the Cobalt high-speed sync board to drive the sync bus.


Memory Resources

The 53640 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the board's DMA and data capture capabilities. Built-in memory functions include an A/D data transient capture mode for taking snapshots of data for transfer to a host computer.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 53640 includes an industry standard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links of x4 or x8, the interface includes multiple DMA controllers for efficient transfers to and from the board. >

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description	
53640	1-Ch. 3.6 GHz or 2-Ch.	
	1.8 GHz, 12-bit A/D,	
	Virtex-6 FPGA - 3U VPX	

Options:

- -002* -2 FPGA speed grade
- -062 XC6VLX240T FPGA
- -064 XC6VSX315T FPGA -104 LVDS FPGA I/O to VPX P2
- -105 Gigabit serial FPGA I/O to VPX P1
- -155* Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
- -165* Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
- * These options are always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description	
8267	VPX Development S	
	See 9267 Detechor	

3267 VPX Development System. See 8267 Datasheet for Options

► Fabric-Transparent Crossbar Switch

The 53640 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency.

Programmable signal input equalization and output pre-emphasis settings enable optimization. Data paths can be selected as single (1X) lanes, or groups of four lanes (4X).

Specifications

- Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter
 - Type: Texas Instruments ADC12D1800 Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz

Resolution: 12 bits

- Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable
- Sample Clock Sources: Front panel SSMC connector
- Sync Bus: Multi-pin connectors, bus includes gate, reset and in and out reference clock
- **External Trigger Input**

Type: Front panel female SSMC connector, TTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array

Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory: Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1or Gen. 2: x4 or x8

Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 53xxx and the 52xxx. For more information on a 52xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	52xxx	53xxx	
Form Factor	3U VPX		
# of XMCs	One XMC		
Crossbar Switch	No	Yes	
PCIe path	VPX P1	VPX P1 or P2	
PCIe width	x4	x8	
Option -104 path	20 pairs on VPX P2		
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2	
Lowest Power	Yes	No	
Lowest Price	Yes	No	

Model 52640 COTS (left) and rugged version

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- 2 GB of DDR3 SDRAM
- Sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: *VITA-46, VITA-48 and VITA-65 (OpenVPX™ System Specification)*
- Ruggedized and conductioncooled versions available

General Information

Model 52640 is a member of the Cobalt[®] family of high-performance XMC modules based on the Xilinx Virtex-6 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

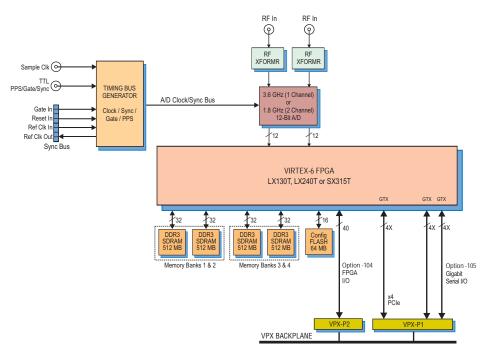
The 52640 includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 52640 factory-installed functions include an A/D acquisition IP module. In addition, IP modules for DDR3 memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factoryinstalled functions and enable the 52640 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides dual 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way ♦ Upper Saddle River ♦ New Jersey 07458 Tel: 201.818:5900 ♦ Fax: 201.818:5904 ♦ Email: info@pentek.com

The 52640 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

► A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 52640 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple boards.

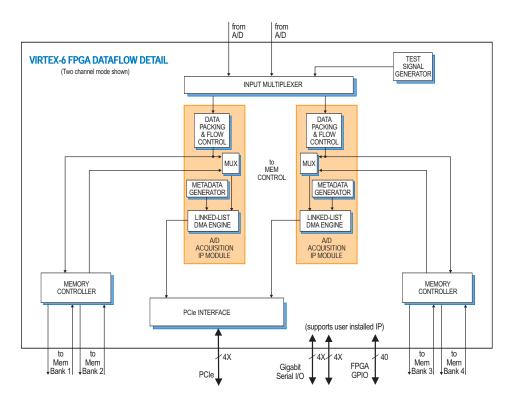
The A/D digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

Clocking and Synchronization

The 52640 accepts an 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel multipin sync bus connector allows multiple boards to be

synchronized, ideal for larger multichanel systems. The sync bus includes gate, reset and in and out reference clock signals. Multiple 52640's can be synchronized using the Cobalt high-speed sync board to drive the sync bus.


Memory Resources

The 52640 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the board's DMA and data capture capabilities. Built-in memory functions include an A/D data transient capture mode for taking snapshots of data for transfer to a host computer.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 52640 includes an industry standard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x4, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	-
Model	Description
52640	1-Ch. 3.6 GHz or 2-Ch.
	1.8 GHz, 12-bit A/D,
	Virtex-6 FPGA - 3U VPX
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

* These options are always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8267 VPX Development System. See 8267 Datasheet for Options

► Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors

A/D Converter

Type: Texas Instruments ADC12D1800 **Sampling Rate:** Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz

Resolution: 12 bits

Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable

Sample Clock Sources: Front panel SSMC connector

Sync Bus: Multi-pin connectors, bus includes gate, reset and in and out reference clock

External Trigger Input

Type: Front panel female SSMC connector, TTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory: Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen. 2: x4 Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C **Relative Humidity:** 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm).

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	-	•
	52xxx	53xxx
Form Factor	3U '	VPX
# of XMCs	One	XMC
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs c	n VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Models 57640 & 58640

1- or 2-Channel 3.6 GHz and 2- or 4-Channel 1.8 GHz, 12-bit A/D, Virtex-6 FPGA - 6U OpenVPX

Model 58640

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One or two 1-channel mode with 3.6 GHz, 12-bit A/Ds
- Two or four 2-channel mode with 1.8 GHz, 12-bit A/Ds
- 2 or 4 GB of DDR3 SDRAM
- PCI Express (Gen. 1 & 2) interface up to x8
- µSync clock/sync bus for multiboard synchronization
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- Ruggedized and conductioncooled versions available

General Information

Models 57640 and 58640 are members of the Cobalt[®] family of high-performance 6U OpenVPX boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71640 XMC modules mounted on a VPX carrier board.

Model 57640 is a 6U board with one Model 71640 module while the Model 58640 is a 6U board with two XMC modules rather than one.

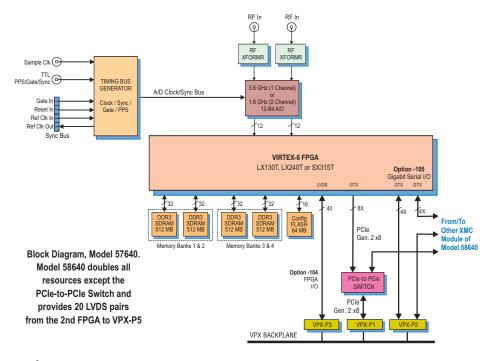
These models include one or two 3.6 GHz, 12-bit A/D converters and four or eight banks of memory.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions of these models include one or two A/D acquisition IP modules. In addition, IP modules for DDR3 memories, controllers for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57640; P3 and P5, Model 58640.

Option -105 supports serial protocalls by providing a 4X gigabit link between the FPGA and VPX P2, Model 57640; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58640. >

Pentek, Inc. One Park Way

Upper Saddle River
New Jersey 07458
Tel: 201:818:5900

Fax: 201:818:5904

Email: info@pentek.com

► A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing these models to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple boards.

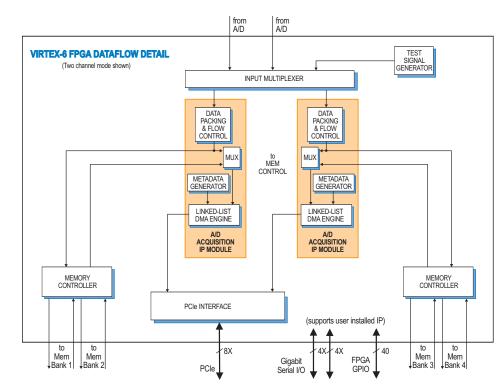
The A/D digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

Clocking and Synchronization

These models accept a 1.8 GHz dualedge sample clock via front panel SSMC connectors. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel multi-pin sync bus connector allows multiple boards to be

synchronized, ideal for larger multichanel systems. The sync bus includes gate, reset and in and out reference clock signals. Multiple boards can be synchronized using the Cobalt high speed sync board to drive the sync bus.


Memory Resources

The Cobalt architecture supports four or eight independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the board's DMA and data capture capabilities. Built-in memory functions include an A/D data transient capture mode for taking snapshots of data for transfer to a host computer.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

These models include an industrystandard interface fully compliant with PCI Express Gen. 1 and 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board. >

A/D Acquisition IP Modules

These models feature one or two A/D Acquisition IP Modules for easy capture and data moving. The IP modules can receive data from the A/Ds, or a test signal generator. The IP modules have associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode.

In single-channel mode, all banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

1- or 2-Channel 3.6 GHz and 2- or 4-Channel 1.8 GHz, 12-bit A/D, Virtex-6 FPGA - 6U OpenVPX

Model 8264

The Model 8264 is a fullyintegrated development system for Pentek Cobalt and Onyx 6U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	0
Model	Description
57640	1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, Virtex-6 FPGA - 6U VPX
58640	2-Ch. 3.6 GHz or 4-Ch. 1.8 GHz, 12-bit A/D with two Virtex-6 FPGAs - 6U VPX
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T
-064	XC6VSX315T
-104	LVDS I/O between the FPGA and P3 connector, Model 57640; P3 and P5 connectors, Model 58640
-105	Gigabit link between the FPGA and P2 connector, Model 57640; gigabit links from each FPGA to P2 connector, Model 78640
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
* These o	ptions are always required
	t Pentek for availability d and conduction-cooled
of rugge	и ини сопинстоп-соотен

of rugged and conduction-cooled versions

 Model
 Description

 8264
 VPX Development System. See 8264 Datasheet for Options

► Specifications

Model 57640: One A/D Model 58640: Two A/Ds Front Panel Analog Signal Inputs (2 or 4) Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter (1 or 2) Type: Texas Instruments ADC12D1800 Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable Sample Clock Sources (1 or 2) Front panel SSMC connector Sync Bus (1 or 2) Multi-pin connectors, bus includes gate, reset and in and out ref clock **External Trigger Input (1 or 2)** Type: Front panel female SSMC connector, TTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array (1 or 2) Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57640; P3 and P5, Model 58640

Option -105: Supports serial protocols by providing a 4X gigabit link between the FPGA and VPX P2, Model 57640; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58640

Memory Banks (1 or 2)

Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or 2: x4 or x8

Environmental: Level L1 & L2 air-cooled; Level L3 ruggedized, conduction-cooled

Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

Models 72640, 73640 and 74640

Model 74640 Model 73640

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One or two 1-channel mode with 3.6 GHz, 12-bit A/Ds
- Two or four 2-channel mode with 1.8 GHz, 12-bit A/Ds
- 2 or 4 GB of DDR3 SDRAM
- Sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Models 72640, 73640 and 74640 are members of the Cobalt[®] family of high performance CompactPCI boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71640 XMC modules mounted on a cPCI carrier board.

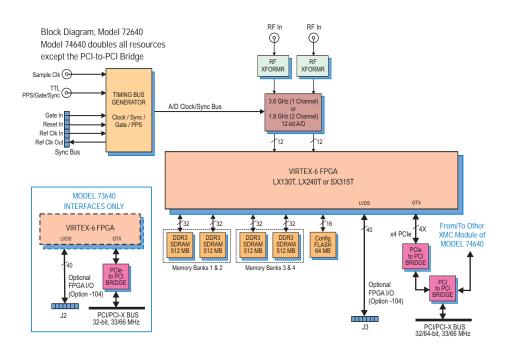
Model 72640 is a 6U cPCI board while the Model 73640 is a 3U cPCI board; both are equipped with one Model 71640 XMC. Model 74640 is a 6U cPCI board with two XMC modules rather than one.

These models include one or two 3.6 GHz, 12-bit A/D converters and four or eight banks of memory.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions of these models include one or two A/D acquisition IP modules. In addition, IP modules for DDR3 memories, controllers for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions, without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73640; J3 connector, Model 72640; J3 and J5 connectors, Model 74640. >

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

► A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing these models to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple boards.

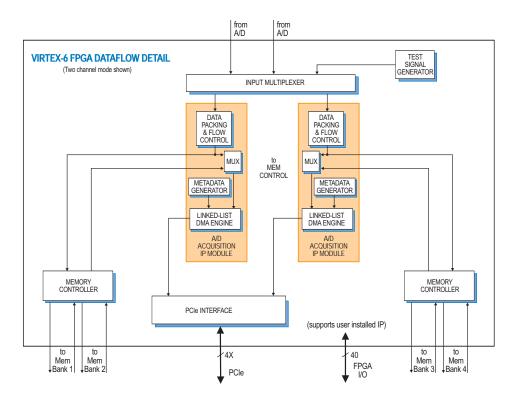
The A/D digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

Clocking and Synchronization

These models accept a 1.8 GHz dualedge sample clock via front panel SSMC connectors. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel multi-pin sync bus connector allows multiple boards to be

synchronized, ideal for larger multichanel systems. The sync bus includes gate, reset and in and out reference clock signals. Multiple boards can be synchronized using the Cobalt high speed sync board to drive the sync bus.


Memory Resources

The Cobalt architecture supports four or eight independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the board's DMA and data capture capabilities. Built-in memory functions include an A/D data transient capture mode for taking snapshots of data for transfer to a host computer.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI-X Interface

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported. Model 73640: 32 bits only.

A/D Acquisition IP Modules

These models feature one or two A/D Acquisition IP Modules for easy capture and data moving. The IP modules can receive data from the A/Ds, or a test signal generator. The IP modules have associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode.

In single-channel mode, all banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

► Specifications

Model 72640 or Model 73640: One A/D Model 74640: Two A/Ds Front Panel Analog Signal Inputs (2 or 4) Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter (1 or 2) Type: Texas Instruments ADC12D1800 Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable Sample Clock Sources (1 or 2) Front panel SSMC connector Sync Bus (1 or 2) Multi-pin connectors, bus includes gate, reset and in and out ref clock **External Trigger Input (1 or 2)** Type: Front panel female SSMC connector, TTL Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array (1 or 2) Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2 Custom I/O Option -104: Provides 20 LVDS pairs

between the FPGA and the J2 connector, Model 73640; J3 connector, Model 72640; J3 and J5 connectors, Model 74640

Memory Banks (1 or 2)

Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-X Interface

PCI-X Bus: 32 or 64 bits at 33 or 66 MHz Model 73640: 32 bits only

Environmental

Operating Temp: 0° to 50° C

- Storage Temp: -20° to 90° C
- **Relative Humidity:** 0 to 95%, non-cond.
- Size: Standard 6U or 3U cPCI board

Ordering Information

Model	Description
72640	1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, Virtex-6 FPGA - 6U cPCI
73640	1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, Virtex-6 FPGA - 3U cPCI
74640	2-Ch. 3.6 GHz or 4-Ch. 1.8 GHz, 12-bit A/D, Virtex-6 FPGA - 6U cPCI
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T
-064	XC6VSX315T
-104	LVDS I/O between the FPGA and J2 connector, Model 73640; J3 connector, Model 72640; J3 and J5 connectors, Model 74640
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

* These options are always required

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- 2 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Sync bus for multimodule synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- AMC.1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)
- Optional front panel LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

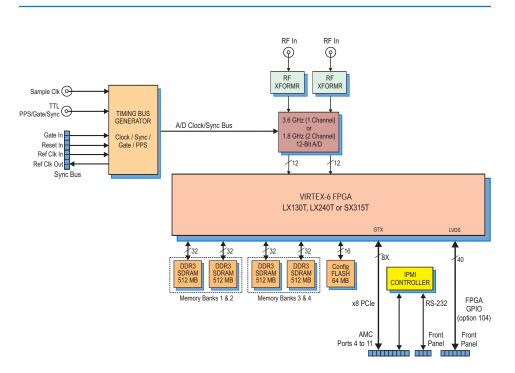
Model 56640 is a member of the Cobalt[®] family of high-performance AMC modules based on the Xilinx Virtex-6 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 56640 includes a front panel general-purpose connector for application-specific I/O.

The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 56640 factory-installed functions include an A/D acquisition IP module. In addition, IP modules for DDR3 memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factoryinstalled functions and enable the 56640 to operate as a complete turnkey solution, without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs a front panel connector with 20 pairs of LVDS connections to the FPGA for custom I/O. ►

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201·818·5900 & Fax: 201·818·5904 & Email: info@pentek.com

A/D Acquisition IP Module

The 56640 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

► A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 56640 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple modules.

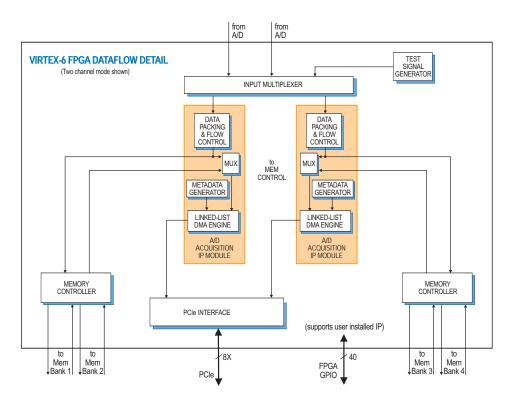
The A/D digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

Clocking and Synchronization

The 56640 accepts a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel multi-pin sync bus connector allows multiple modules to be

synchronized, ideal for larger multichanel systems. The sync bus includes gate, reset and in and out reference clock signals. Multiple 56640's can be synchronized using the Cobalt high speed sync module to drive the sync bus.


Memory Resources

The 56640 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the module's DMA and data capture capabilities. Built-in memory functions include an A/D data transient capture mode for taking snapshots of data for transfer to a host computer.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

AMC Interface

The Model 56640 complies with the AMC.1 specification by providing an x8 PCIe connection to AdvancedTCA carriers or μ TCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller). >

► PCI Express Interface

The Model 56640 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. The x8 lane interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter Type: Texas Instruments ADC12D1800 Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable Sample Clock Sources: Front panel SSMC connector Sync Bus: Multi-pin connectors, bus includes gate, reset and in and out ref clock

External Trigger Input

Type: Front panel female SSMC connector, TTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2, or XC6VSX315T-2

Custom I/O

Option -104: Installs a front panel connector with 20 LVDS pairs to the FPGA **Memory:** Four 512 MB DDR3 SDRAM

memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen. 2: x4 or x8

AMC Interface

Type: AMC.1

Module Management: IPMI Version 2.0 Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond.

Size: Single-width, full-height AMC module, 2.89 in. x 7.11 in.

Ordering Information

Model	Description	
56640	1-Ch. 3.6 GHz or 2-Ch.	
	1.8 GHz, 12-bit A/D,	
	Virtex-6 FPGA - AMC	
Options:		
-002*	-2 FPGA speed grade	
-062	XC6VLX240T	
-064	XC6VSX315T	
-104	LVDS FPGA I/O through	
	front panel connector	
-155*	Two 512 MB DDR3	
	SDRAM Memory Banks	
	(Banks 1 and 2)	
-165*	Two 512 MB DDR3	
	SDRAM Memory Banks	
	(Banks 3 and 4)	
* These entions are always required		

* These options are always required

Contact Pentek for availability of rugged and conduction-cooled versions

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four 200 MHz 16-bit A/Ds
- Up to 2 GB of DDR3 SDRAM or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- VITA 42.0 XMC compatible with switched fabric interfaces
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 71660 is a member of the Cobalt[®] family of high performance XMC modules based on the Xilinx Virtex-6 FPGA. A multichannel, high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its builtin data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes four A/Ds and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 71660 includes general purpose and gigabit serial connectors for application-specific I/O.

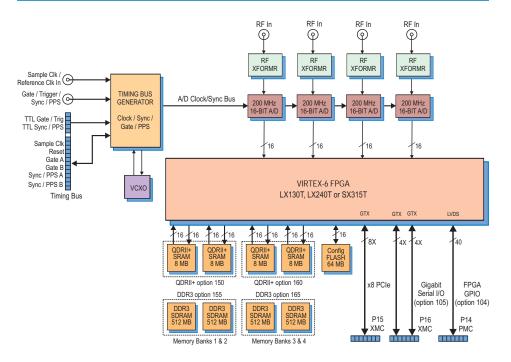
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 71660 factory-installed functions include four A/D acquisition IP modules.

IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 71660 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs the P14 PMC connector with 20 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with one 8X or two 4X gigabit links to the FPGA to support serial protocols.

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

► A/D Converter Stage

The front end accepts four full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

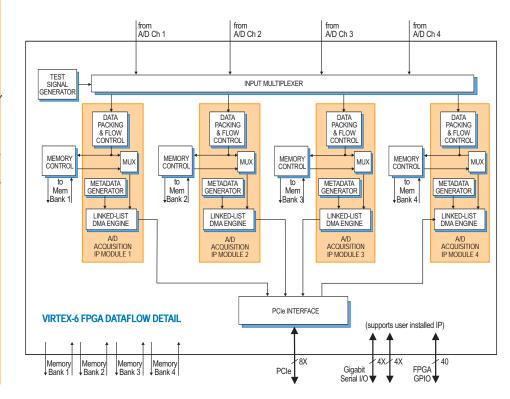
Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An onboard clock generator receives an external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple modules to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple modules.

Multiple 71660's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected modules.

Memory Resources


The 71660 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory.

Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

XMC Interface

The Model 71660 complies with the VITA 42.0 XMC specification. Two connectors each provide dual 4X links or a single 8X link with up to a 6 GHz bit clock. With dual XMC connectors, the 71660 >

A/D Acquisition IP Modules

The 71660 features four A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the four A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201.818:5900
Fax: 201.818:5904
Email: info@pentek.com

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards (Models 78xxx). It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	0
Model	Description
71660	4-Channel 200 MHz A/D with Virtex-6 FPGA - XMC
Options:	
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O through P14 connector
-105	Gigabit serial FPGA I/O through P16 connector
-150	Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)
-160	Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4)
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
<i>c i</i>	D 1 1 4 11 11 11

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

supports x8 PCIe on the first XMC connector leaving the second connector free to support user-installed transfer protocols specific to the target application.

PCI Express Interface

The Model 71660 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits Sample Clock Sources: On-board clock synthesizer Clock Synthesizer Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz Clock Dividers: External clock or VCXO

can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus: 26-pin front panel connector; LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T, or XC6VSX315T

Custom I/O

Option -104: Installs the PMC P14 connector with 20 LVDS pairs to the FPGA **Option -105:** Installs the XMC P16 connector configurable as one 8X or two 4X gigabit serial links to the FPGA

Memory

Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR **Option 155 or 165:** Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8; Gen. 2: x4

Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond.

Size: Standard XMC module, 2.91 in. x 5.87 in.

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four 200 MHz 16-bit A/Ds
- Up to 2 GB of DDR3 SDRAM or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 78660 is a member of the Cobalt[®] family of high performance PCIe boards based on the Xilinx Virtex-6 FPGA. A multichannel, high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution.

It includes four A/Ds and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 78660 includes optional general-purpose and gigabit serial connectors for applicationspecific I/O protocols.

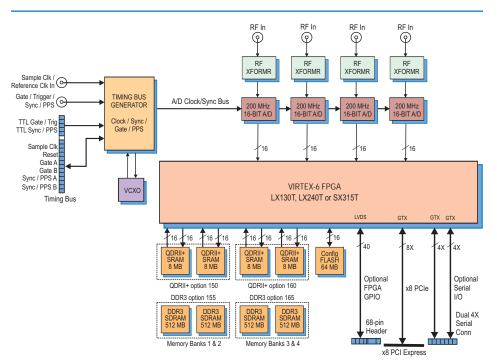
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory installed applications ideally matched to the board's analog interfaces. The 78660 factory-installed functions include four A/D acquisition IP modules.

IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory- installed functions and enable the 78660 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105 connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201.818:5900
Fax: 201.818:5904
Email: info@pentek.com

A/D Acquisition IP Modules

ily capturing and moving data.

Each IP module can receive data

from any of the four A/Ds or a

ciated memory bank for buffering

data in FIFO mode or for storing data in transient capture mode.

with DMA engines for easily

moving A/D data through the PCIe interface. These powerful linked-list DMA engines are

capable of a unique Acquisition

by a link definition need not be

of the acquisition gate. This is

where an external gate drives

of that gate is not known or is

Each IP module has an asso-

test signal generator

The 78660 features four A/DAcquisition IP Modules for eas-

A/D Converter Stage

The front end accepts four full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other board resources.

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit.

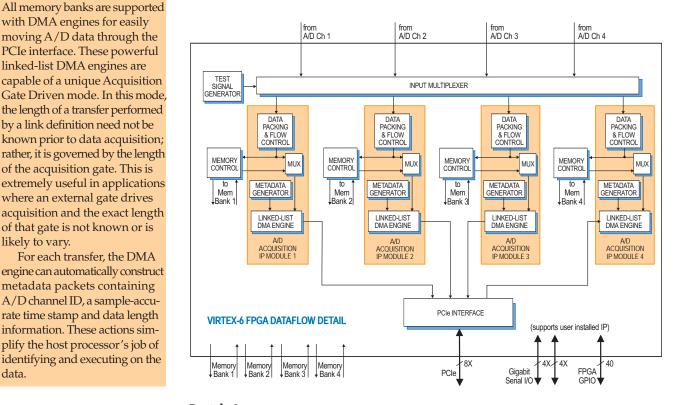
In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the

LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple 78660's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources


The 78660 architecture supports up to four independent memory banks which can be configured with all ODRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory.

Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deep memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 78660 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board. >

likely to vary. For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
78660	4-Channel 200 MHz A/D with Virtex-6 FPGA - PCIe
Options:	
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O through 68-pin ribbon cable connector
-105	Gigabit serial FPGA I/O through two 4X top edge connectors
-150	Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)
-160	Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4)
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
Model	Description
8266	PC Development System See 8266 Datasheet for

Options

► Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz **Resolution:** 16 bits Sample Clock Sources: On-board clock synthesizer **Clock Synthesizer** Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz),

programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus **Synchronization:** VCXO can be locked

to an external 4 to 180 MHz PLL system reference, typically 10 MHz **Clock Dividers**: External clock or VCXO

can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus: 26-pin front panel connector; LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T or XC6VSX315T

Custom I/O

Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105: Connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board **emoty**

Memory

Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR **Option 155 or 165:** Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8; Gen. 2: x4

Environmental

Operating Temp: 0° to 50° C

- **Storage Temp:** –20° to 90° C
- Relative Humidity: 0 to 95%, non-cond.
- Size: Half length PCIe card, 4.38 in. x 7.13 in.

Model 53660 COTS (left) and rugged version

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Supports gigabit serial fabrics including PCI Express, Serial RapidIO and Xilinx Aurora
- Four 200 MHz 16-bit A/Ds
- Up to 2 GB of DDR3 SDRAM or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 53660 is a member of the Cobalt[®] family of high performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. A multichannel, high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its builtin data capture features offer an ideal turnkey solution.

The 53660 includes four A/Ds and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

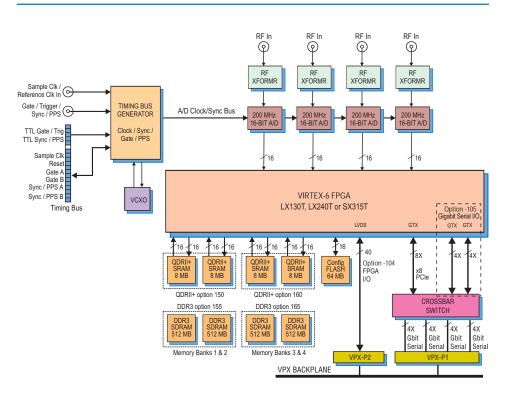
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 53660 factory-installed functions include four A/D acquisition IP modules.

IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 53660 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201-818-5900
Fax: 201-818-5904
Email: info@pentek.com

► A/D Converter Stage

The front end accepts four full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

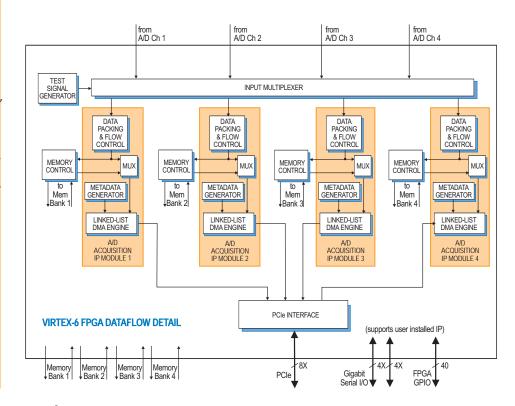
Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An onboard clock generator receives an external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple 53660's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources


The 53660 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory.

Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 53660 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board. >

A/D Acquisition IP Modules

The 53660 features four A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the four A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	0
Model	Description
53660	4-Channel 200 MHz, 16-bit A/D with Virtex-6
	FPGA - 3U VPX
Options:	
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1
-150	Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)
-160	Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4)
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8267 VPX Development System. See 8267 Datasheet for Options

► Fabric-Transparent Crossbar Switch

The 53660 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency. Programmable signal input equalization and output pre-emphasis settings enable optimization. Data paths can be selected as single (1X) lanes, or groups of four lanes (4X).

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB
Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz
A/D Converters

Type: Texas Instruments ADS5485 **Sampling Rate:** 10 MHz to 200 MHz **Resolution:** 16 bits

Sample Clock Sources: On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus: 26-pin front panel connector LVPECL bus includes, clock/sync/ gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T or XC6VSX315T

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory

Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR **Option 155 or 165:** Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8; Gen. 2: x4

Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 53xxx and the 52xxx. For more information on a 52xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	VFA Failing	Comparison
	52xxx	53xxx
Form Factor	3U '	VPX
# of XMCs	One	XMC
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs o	n VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Model 52660 COTS (left) and rugged version

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Supports gigabit serial fabrics including PCI Express, Serial RapidIO and Xilinx Aurora
- Four 200 MHz 16-bit A/Ds
- Up to 2 GB of DDR3 SDRAM or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 52660 is a member of the Cobalt[®] family of high performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. A multichannel, high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its builtin data capture features offer an ideal turnkey solution.

The 52660 includes four A/Ds and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

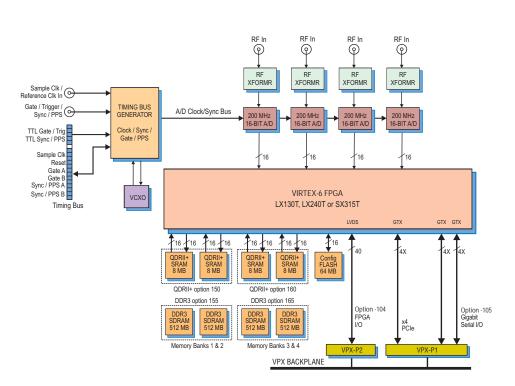
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 52660 factory-installed functions include four A/D acquisition IP modules.

IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 52660 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

A/D Acquisition IP Modules

Acquisition IP Modules for eas-

ily capturing and moving data. Each IP module can receive data

from any of the four A/Ds or a

ciated memory bank for buffering

data in FIFO mode or for storing

data in transient capture mode.

with DMA engines for easily

moving A/D data through the PCIe interface. These powerful linked-list DMA engines are

by a link definition need not be

of the acquisition gate. This is

where an external gate drives

of that gate is not known or is

Each IP module has an asso-

test signal generator

The 52660 features four A/D

A/D Converter Stage

The front end accepts four full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

Clocking and Synchronization

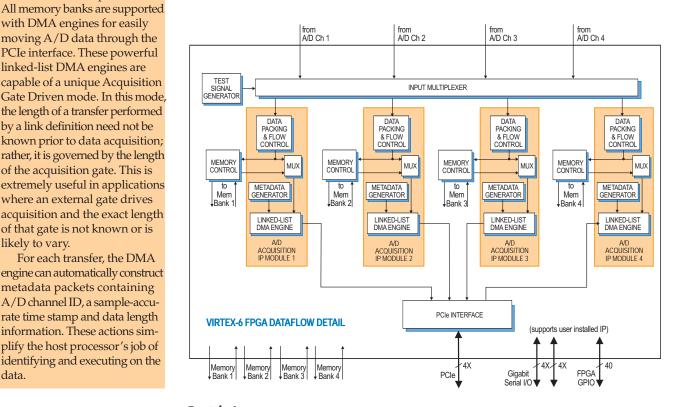
An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An onboard clock generator receives an external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the

LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple 52660's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources


The 52660 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory.

Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 52660 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x4, the interface includes multiple DMA controllers for efficient transfers to and from the board. >

likely to vary. For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

www.pentek.com

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
52660	4-Channel 200 MHz,
	16-bit A/D with Virtex-6 FPGA - 3U VPX

Options:

options.	
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1
-150	Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)
-160	Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4)
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8267 VPX Development System. See 8267 Datasheet for Options

► Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB

Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters

Type: Texas Instruments ADS5485 **Sampling Rate:** 10 MHz to 200 MHz **Resolution:** 16 bits

Sample Clock Sources: On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus: 26-pin front panel connector LVPECL bus includes, clock/sync/ gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array

Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T or XC6VSX315T

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory

Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen. 2: x4 Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	52xxx	53xxx
Form Factor	3U VPX	
# of XMCs	One XMC	
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs on VPX P2	
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Models 57660 & 58660

4- or 8-Channel 200 MHz, 16-bit A/D with Virtex-6 FPGA - 6U OpenVPX

Model 58660

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four or eight 200 MHz 16-bit A/Ds
- Up to 2 or 4 GB of DDR3 SDRAM; or: 32 or 64 MB of QDRII+ SRAM
- PCI Express (Gen. 1 & 2) interface up to x8
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- Ruggedized and conductioncooled versions available

General Information

Models 57660 and 58660 are members of the Cobalt[®] family of high-performance 6U OpenVPX boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71660 XMC modules mounted on a VPX carrier board.

Model 57660 is a 6U board with one Model 71660 module while the Model 58660 is a 6U board with two XMC modules rather than one.

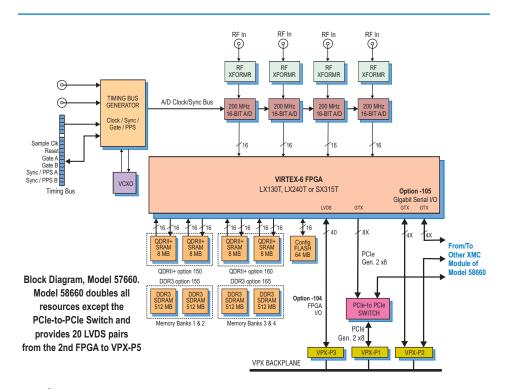
These models include four or eight A/Ds and four or eight banks of memory.

The Cobalt Architecture

The Pentek Cobalt Architecture features Virtex-6 FPGAs. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module. Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factoryinstalled functions of these models include four or eight A/D acquisition IP modules.

IP modules for either DDR3 or QDRII+ memories, controllers for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions without the need to develop FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57660; P3 and P5, Model 58660.

Option -105 supports serial protocalls by providing a 4X gigabit link between the FPGA and VPX P2, Model 57660; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58660. >

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458 Tel: 201·818·5900 ◆ Fax: 201·818·5904 ◆ Email: info@pentek.com A/D Acquisition IP Modules

These models feature four

or eight A/D Acquisition IP

Modules for easily capturing

module can receive data from

Each IP module has an asso-

ciated memory bank for buffering

data in FIFO mode or for storing

data in transient capture mode. All memory banks are supported with DMA engines for easily

moving A/D data through the PCIe interface. These powerful linked-list DMA engines are

by a link definition need not be

rather, it is governed by the

length of the acquisition gate.

applications where an external

gate drives acquisition and the

exact length of that gate is not

This is extremely useful in

any of four A/Ds or a test

signal generator

and moving data. Each IP

4- or 8-Channel 200 MHz, 16-bit A/D with Virtex-6 FPGA -6U OpenVPX

► A/D Converter Stages

The front end accepts four or eight full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four or eight Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-6 FPGAs for signal processing, data capture or for routing to other board resources.

Clocking and Synchronization

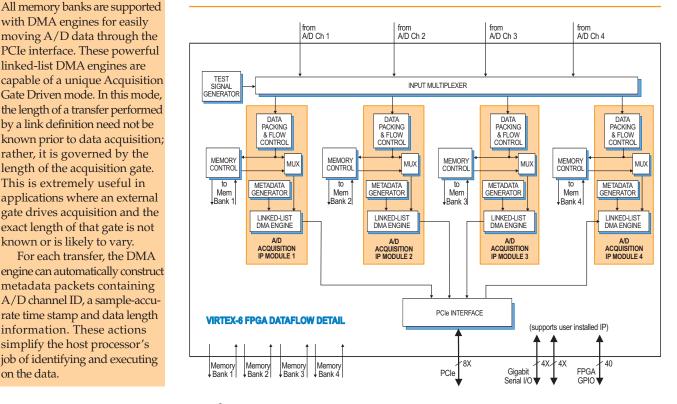
An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An onboard clock generator receives an external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the

LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple boards can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources


The Cobalt architecture supports up to four or eight independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory.

Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

These models include an industrystandard interface fully compliant with PCI Express Gen. 1 and 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board. >

known or is likely to vary. For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

NTE

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

www.pentek.com

4- or 8-Channel 200 MHz, 16-bit A/D with Virtex-6 FPGA -6U OpenVPX

Model 8264

The Model 8264 is a fullyintegrated development system for Pentek Cobalt and Onyx 6U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model Description 57660 4-Channel 200 MHz 16-bit A/D with Virtex-6 FPGA -6U VPX 58660 8-Channel 200 MHz 16-bit A/D with two Virtex-6 FPGAs - 6U VPX Options:

-062 XC6VLX240T FPGA

- -064 XC6VSX315T FPGA -104 LVDS I/O between the FPGA and P3 connector. Model 57660; P3 and P5 connectors, Model 58660
- -105 Gigabit link between the FPGA and P2 connector, Model 57660; gigabit links from each FPGA to P2 connector, Model 58660
- Two 8 MB QDRII+ -150 SRAM Memory Banks (Banks 1 and 2)
- -160 Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4)
- -155 Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
- -165 Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description 8264 VPX Development System. See 8264 Datasheet for Options

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458 www.pentek.com Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Specifications

Model 57660: 4 A/Ds Model 58660: 8 A/Ds Front Panel Analog Signal Inputs (4 or 8) Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters (4 or 8) Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits

Sample Clock Sources (1 or 2) On-board clock synthesizers

Clock Synthesizers (1 or 2) Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clocks (1 or 2)

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus (1 or 2): 26-pin front panel connector; LVPECL bus includes, clock/ sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Inputs (1 or 2) Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T or XC6VSX315T

Custom I/O

Option -104: Provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57660; P3 and P5, Model 58660

Option -105: Supports serial protocols by providing a 4X gigabit link between the FPGA and VPX P2, Model 57660; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58660

Memory Banks (1 or 2)

Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR **PCI-Express Interface**

PCI Express Bus: Gen. 1 or 2: x4 or x8 Environmental: Level L1 & L2 air-cooled;

Level L3 ruggedized, conduction-cooled Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

Model 74660 Model 73660

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four or eight 200 MHz 16-bit A/Ds
- Up to 2 or 4 GB of DDR3 SDRAM; or: 32 or 64 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Models 72660, 73660 and 74660 are members of the Cobalt[®] family of high performance CompactPCI boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71660 XMC modules mounted on a cPCI carrier board.

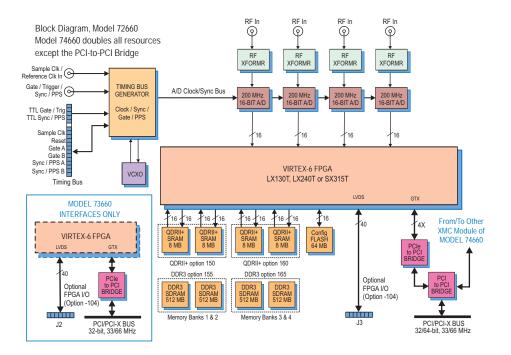
Model 72660 is a 6U cPCI board while the Model 73660 is a 3U cPCI board; both are equipped with one Model 71660 XMC. Model 74660 is a 6U cPCI board with two XMC modules rather than one.

These models include four or eight A/Ds and four or eight banks of memory.

The Cobalt Architecture

The Pentek Cobalt Architecture features Virtex-6 FPGAs. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module. Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factoryinstalled functions of these models include four or eight A/D acquisition IP modules.

IP modules for either DDR3 or QDRII+ memories, controllers for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions without the need to develop FPGA IP.


Extendable IP Design

For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73660; J3 connector, Model 72660; J3 and J5 connectors, Model 74660. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

► A/D Converter Stage

The front end accepts four or eight full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four or eight Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other board resources.

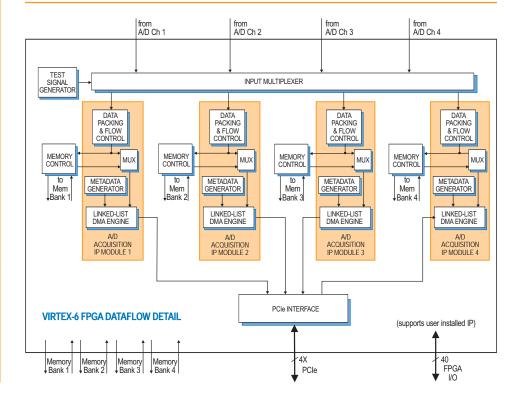
Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An onboard clock generator receives an external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple boards can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources


The Cobalt architecture supports up to four or eight independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory.

Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI-X Interface

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported. Model 73660: 32 bits only.

A/D Acquisition IP Modules

These models feature four or eight A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of four A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way

Upper Saddle River
New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904
Email: info@pentek.com

> Specifications Model 72660 or Model 73660: 4 A/Ds Model 74660: 8 A/Ds Front Panel Analog Signal Inputs (4 or 8) Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters (4 or 8) Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits Sample Clock Sources (1 or 2) On-board clock synthesizers Clock Synthesizers (1 or 2) Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the

A/D clock External Clocks (1 or 2)

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus (1 or 2): 26-pin front panel connector; LVPECL bus includes, clock/ sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Inputs (1 or 2) Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T or XC6VSX315T

Custom I/O

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73660; J3 connector, Model 72660; J3 and J5 connectors, Model 74660

Memory Banks (1 or 2)

Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR **Option 155 or 165:** Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-X Interface

PCI-X Bus: 32 or 64 bits at 33 or 66 MHz Model 73660: 32 bits only

Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Standard 6U or 3U cPCI board

Ordering Information

Model Description 72660 4-Channel 200 MHz 16-bit A/D with Virtex-6 FPGA

- 6U cPCI
 73660 4-Channel 200 MHz 16-bit A/D with Virtex-6 FPGA -3U cPCI
 74660 8-Channel 200 MHz 16-bit
- A/D with two Virtex-6 FPGAs - 6U cPCI

Options:

-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS I/O between the
	FPGA and J2 connector,
	Model 73660; J3 connector,
	Model 72660; J3 and J5

- -150 Connectors, Model 74660 -150 Two 8 MB QDRII+ SRAM Memory Banks
- (Banks 1 and 2) -160 Two 8 MB QDRII+ SRAM Memory Banks
- (Banks 3 and 4) -155 Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
- -165 Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four 200 MHz 16-bit A/Ds
- Up to 2 GB of DDR3 SDRAM or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- AMC.1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)
- Optional front panel LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

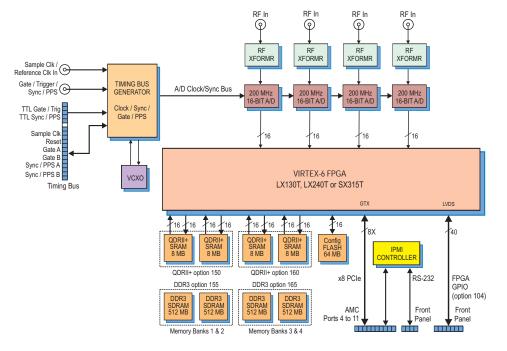
Model 56660 is a member of the Cobalt[®] family of high-performance AMC modules based on the Xilinx Virtex-6 FPGA. A multichannel, high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its builtin data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes four A/Ds and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 56660 includes a front panel general-purpose connector for applicationspecific I/O.

The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 56660 factory-installed functions include four A/D acquisition IP modules. IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 56660 to operate as a complete turnkey solution without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs a front panel connector with 20 pairs of LVDS connections to the FPGA for custom I/O. ►

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458

A/D Acquisition IP Modules

Acquisition IP Modules for eas-

ily capturing and moving data.

Each IP module can receive data

from any of the four A/Ds or a

ciated memory bank for buffering

data in FIFO mode or for storing

data in transient capture mode.

with DMA engines for easily

moving A/D data through the PCIe interface. These powerful linked-list DMA engines are

by a link definition need not be

of the acquisition gate. This is

where an external gate drives

of that gate is not known or is

likely to vary.

Each IP module has an asso-

test signal generator

The 56660 features four A/D

A/D Converter Stage

The front end accepts four full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

Clocking and Synchronization

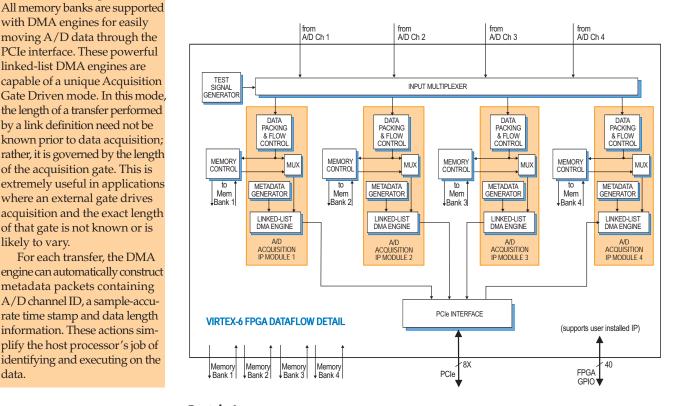
An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An onboard clock generator receives an external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple modules to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the

LVPECL bus can drive the timing signals for synchronizing multiple modules.

Multiple 56660's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected modules.

Memory Resources


The 56660 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory.

Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

AMC Interface

The Model 56660 complies with the AMC.1 specification by providing an x8 PCIe connection to AdvancedTCA carriers or µTCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller). >

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

www.pentek.com

4-Channel 200 MHz, 16-bit A/D with Virtex-6 FPGA - AMC

► PCI Express Interface

The Model 56660 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits Sample Clock Sources: On-board clock synthesizer **Clock Synthesizer** Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs **External Trigger Input** Type: Front panel female SSMC connector, LVTTL Function: Programmable functions include: trigger, gate, sync and PPS Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T, or XC6VSX315T Custom I/O Option -104: Installs a front panel connector with 20 LVDS pairs to the FPGA Memory Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR **PCI-Express Interface** PCI Express Bus: Gen. 1: x4 or x8; Gen. 2: x4 **AMC Interface** Type: AMC.1 Module Management: IPMI Version 2.0 Environmental **Operating Temp:** 0° to 50° C **Storage Temp:** –20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: Single-width, full-height AMC module, 2.89 in. x 7.11 in.

Timing Bus: 26-pin front panel connector;

Ordering Information

Ordering information		
Model	Description	
56660	4-Channel 200 MHz A/D with Virtex-6 FPGA - AMC	
Options	:	
-062	XC6VLX240T FPGA	
-064	XC6VSX315T FPGA	
-104	LVDS FPGA I/O through front panel connector	
-150	Two 8 MB QDRII+ SRAM Memory Banks	
	(Banks 1 and 2)	
-160	Two 8 MB QDRII+ SRAM	

- Memory Banks (Banks 3 and 4) -155 Two 512 MB DDR3
- SDRAM Memory Banks (Banks 1 and 2) -165 Two 512 MB DDR3
- SDRAM Memory Banks (Banks 3 and 4)

Contact Pentek for availability of rugged and conduction-cooled versions

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

- Complete GSM channelizer with analog IF interface
- Four 180 MHz 16-bit A/Ds
- Two banks of 375 DDCs for upper GSM band
- Two banks of 175 DDCs for lower GSM band
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- PCI Express Gen. 2 x8

General Information

Model 71663 is a member of the Cobalt[®] family of high-performance XMC modules based on the Xilinx Virtex-6 FPGA. This four-channel, high-speed A/D converter with 1100 GSM DDCs (digital downconverters) accepts IF signals from an RF tuner. It is ideal for capturing all transmit and receive signals in both upper and lower GSM bands.

It includes four A/Ds and four banks of DDCs. Channelizer data and control signals flow across the PCI Express Gen. 2 native interface, providing peak rates of up to 4 GB/sec.

The Cobalt Architecture

The Pentek Cobalt architecture connects all of the board's data converters, digital interfaces, clocks and timing signals to the FPGA. Here, four factory-installed GSM channelizer IP cores are supported with additional FPGA functions including packet formation, four DMA controllers, PCIe interface, gating, and triggering.

The 71663 is a complete, full-featured subsystem, ready to use with no additional FPGA develpment required.

A/D Converter Stage

The front end accepts four analog IF inputs on front panel SSMC connectors with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters clocked at 180 MHz.

The digital outputs are delivered into the FPGA for GSM channelizer signal processing.

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An on-board clock generator accepts an external 180 MHz sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board 180 MHz voltagecontrolled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a reference clock, typically 10 MHz, for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple modules to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple modules.

Multiple 71663's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected modules.

GSM Channelizer Cores

The 71663 contains four powerful GSM channelizer cores, two with 375 DDCs and two with 175 DDCs. Flexible input routing allows the independent, non-blocking assignment of any A/D converter to serve as the input source for any of the four GSM channelizers. >

1100-Channel GSM Channelizer with Quad A/D - XMC

➤ The 375-channel cores are designed for the upper GSM bands which contain two 75 MHz bands, one for uplink and one for downlink. The 175-channel cores are designed for the lower GSM band and handle two 35 MHz bands, one for uplink and one for downlink.

Before connection to the 71663, these GSM RF bands must first be separately downconverted to an IF frequency centered at 45 MHz, 135 MHz or 225 MHz using an external analog RF tuner.

These IF signals are then digitized by the 71663 A/Ds at 180 MS/sec in the first, second, or third Nyquist zones, respectively. In order to prevent aliasing, careful filtering must ensure that no signals appear in adjacent Nyquist zones.

Each of the channelizers is designed to accept real digital samples of the IF signal from the A/D converter. The first stage of the GSM channelizer is a complex mixer that shifts the center frequency of the IF signal (45, 135 or 225 MHz) to 0 Hz, thereby producing complex I+Q samples.

The DDCs split the IF input into either 175 or 375 parallel DDC baseband channels, equally spaced at 200 kHz. The DDC output sample rate is resampled to precisely 180 MHz*13/2160, or approximately 1.08333 MHz. This is four times the GSM symbol rate of 270.666 kSymbols/sec. The output passband of each DDC channel is nominally 160 kHz, with filter characteristics fully defined in the channel response chart in the specifications.

Channelizer Output Formatting

All 1100 DDCs generate parallel, complex output sample streams. At a sample rate of 1.08333 MS/sec, this represents an aggregate output rate of 9.533 GB/sec, greatly exceeding the 4 GB/sec peak rate of PCIe Gen 2 x8 interface.

To mitigate this situation, every four DDC channels are frequency-multiplexed into a single "superchannel". This is allowed because of the 4x oversampling, and results in a reduction of the aggregate PCIe traffic by a factor of 4 to 2.383 GB/sec, which is now well within the capability of the PCIe Gen 2 x8 interface.

During superchannel formation, the 24-bit I + 24-bit Q output samples from four DDCs are summed to superchannel samples with 26-bit I + 26-bit Q.

As a result, the two 375-channel banks each deliver 94 superchannels, while the two 175-channel banks each deliver 44 superchannels. The last superchannel in each bank contains only three DDC channels.

A superchannel enable mask word containing one enable bit for each superchannel allows independent selection of which superchannel samples are delivered across PCIe. There are four superchannel mask words, one for each bank.

Superchannel Packets and Headers

Superchannel packets are formed by appending enabled superchannel samples sequentially from each bank. Once complete, a unique superchannel packet header is inserted at the beginning of each packet for identification.

The header contains a time stamp, a sequential packet count, the number of enabled superchannels, the DMA channel identifier, and other information. By inspecting the header, the remaining superchannel data "payload" samples can be identified and recovered by the host.

PCI Express Interface

The Model 71663 includes an industrystandard interface fully compliant with PCI Express Gen. 2 bus specifications. Supporting PCIe links up to x8, the interface includes four DMA controllers for efficient packet transfers from each of the four DDC banks to system memory.

The PCIe interface is also used as the programming interface for all status and control between the 71663 and host. >

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Front Panel Analog Signal Inputs
Input Type: Transformer-coupled, front
panel female SSMC connectors
Transformer Type: Coil Craft
WBC4-6TLB
Full Scale Input: +8 dBm into 50 ohms
3 dB Passband: 300 kHz to 700 MHz
A/D Converters
Type: Texas Instruments ADS5485
Sampling Rate: 10 MHz to 200 MHz
Resolution: 16 bits
Sample Clock Sources: On-board clock
synthesizer
Clock Synthesizer
Clock Source: Selectable from on-board
180 MHz VCXO, front panel external
clock or LVPECL timing bus
Synchronization: VCXO can be locked
to an external 10 MHz system reference
External Clock
Type: Front panel female SSMC con-
nector, sine wave, 0 to +10 dBm, 50 ohms,
AC-coupled, accepts 180 MHz sample
clock or 10 MHz system reference
Timing Bus: 26-pin front panel connector;
LVPECL bus includes, clock/sync/gate/
PPS inputs and outputs; TTL signal for
gate/trigger and sync/PPS inputs
External Trigger Input
Type: Front panel female SSMC
connector, LVTTL
Function: Programmable functions
include: trigger, gate, sync and PPS
GSM Channel Banks
DDCs per bank: two banks of 175 DDCs
and two banks of 375 DDCs
Overall bandwidth per bank : 35 MHz
& 75 MHz for 175- & 375-channel banks
IF (Center) Freq: 45, 135 or 225 MHz

➤ Specifications

DDC Channels Channel Spacing: 200 kHz, fixed DDC Center Freqs: IF Freq ± k * 200 kHz, where k = 0 to 87, or 0 to 187 **DDC Channel Filter Characteristics** < 0.1 dB passband flatness across ±80 kHz from center (160 kHz BW) > 18 dB attenuation at ±100 kHz > 78 dB attenuation at ± 170 kHz > 83 dB attenuation at ± 600 kHz > 93 dB attenuation at ±800 KHz > 96 dB attenuation at $> \pm$ 3 MHz DDC Output Rate *f*_s: Resampled to 180 MHz*13/2160 = 1.0833333 MS/sec DDC Data Output Format: 24 bits I + 24 bits Q Superchannels Content: Four consecutive DDC channels are frequency-offset from each other and then summed together Frequency Offsets for each DDC: First: $-f_s/4$ (-270.8333 kHz) Second: 0 Hz Third: $+f_s/4$ (+270.8333 kHz) Fourth: $+f_s/2$ (+541.666 kHz) Superchannel Sample Rate: *f*_s Superchannel Output Format: 26 bits I + 26 bits Q Number of Superchannels per Bank: 175-Channel banks: 44; 375-Channel banks: 94 Field Programmable Gate Array: Xilinx Virtex-6 XC6VSX315T **PCI Express Interface** PCI Express Bus: Gen. 2 x8 Environmental **Operating Temp:** 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: Standard XMC module, 2.91 in. x 5.87 in.

Ordering Information

Model	Description
71663	1100-Channel GSM
	Channelizer with Quad
	A/D - XMC

Contact Pentek for availability of rugged and conduction-cooled versions

ModelDescription8266PC Development System
See 8266 Datasheet for
Options

- Complete GSM channelizer with analog IF interface
- Four 180 MHz 16-bit A/Ds
- Two banks of 375 DDCs for upper GSM band
- Two banks of 175 DDCs for lower GSM band
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- PCI Express Gen. 2 x8

General Information

Model 78663 is a member of the Cobalt[®] family of high-performance PCIe boards based on the Xilinx Virtex-6 FPGA. This fourchannel, high-speed A/D converter with 1100 GSM DDCs (digital downconverters) accepts IF signals from an RF tuner. It is ideal for capturing all transmit and receive signals in both upper and lower GSM bands.

It includes four A/Ds and four banks of DDCs. Channelizer data and control signals flow across the PCI Express Gen. 2 native interface, providing peak rates of up to 4 GB/sec.

The Cobalt Architecture

The Pentek Cobalt architecture connects all of the board's data converters, digital interfaces, clocks and timing signals to the FPGA. Here, four factory-installed GSM channelizer IP cores are supported with additional FPGA functions including packet formation, four DMA controllers, PCIe interface, gating, and triggering.

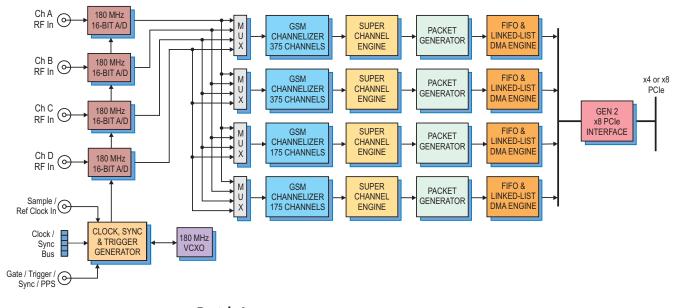
The 78663 is a complete, full-featured subsystem, ready to use with no additional FPGA develpment required.

A/D Converter Stage

The front end accepts four analog IF inputs on front panel SSMC connectors with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters clocked at 180 MHz.

The digital outputs are delivered into the FPGA for GSM channelizer signal processing.

Clocking and Synchronization


An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An on-board clock generator accepts an external 180 MHz sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board 180 MHz voltagecontrolled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a reference clock, typically 10 MHz, for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple 78663's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

GSM Channelizer Cores

The 78663 contains four powerful GSM channelizer cores, two with 375 DDCs and two with 175 DDCs. Flexible input routing allows the independent, non-blocking assignment of any A/D converter to serve as the input source for any of the four GSM channelizers.

1100-Channel GSM Channelizer with Quad A/D - x8 PCIe

➤ The 375-channel cores are designed for the upper GSM bands which contain two 75 MHz bands, one for uplink and one for downlink. The 175-channel cores are designed for the lower GSM band and handle two 35 MHz bands, one for uplink and one for downlink.

Before connection to the 78663, these GSM RF bands must first be separately downconverted to an IF frequency centered at 45 MHz, 135 MHz or 225 MHz using an external analog RF tuner.

These IF signals are then digitized by the 78663 A/Ds at 180 MS/sec in the first, second, or third Nyquist zones, respectively. In order to prevent aliasing, careful filtering must ensure that no signals appear in adjacent Nyquist zones.

Each of the channelizers is designed to accept real digital samples of the IF signal from the A/D converter. The first stage of the GSM channelizer is a complex mixer that shifts the center frequency of the IF signal (45, 135 or 225 MHz) to 0 Hz, thereby producing complex I+Q samples.

The DDCs split the IF input into either 175 or 375 parallel DDC baseband channels, equally spaced at 200 kHz. The DDC output sample rate is resampled to precisely 180 MHz*13/2160, or approximately 1.08333 MHz. This is four times the GSM symbol rate of 270.666 kSymbols/sec. The output passband of each DDC channel is nominally 160 kHz, with filter characteristics fully defined in the channel response chart in the specifications.

Channelizer Output Formatting

All 1100 DDCs generate parallel, complex output sample streams. At a sample rate of 1.08333 MS/sec, this represents an aggregate output rate of 9.533 GB/sec, greatly exceeding the 4 GB/sec peak rate of PCIe Gen 2 x8 interface.

To mitigate this situation, every four DDC channels are frequency-mutliplexed into a single "superchannel". This is allowed because of the 4x oversampling, and results in a reduction of the aggregate PCIe traffic by a factor of 4 to 2.383 GB/sec, which is now well within the capability of the PCIe Gen 2 x8 interface.

During superchannel formation, the 24-bit I + 24-bit Q output samples from four DDCs are summed to superchannel samples with 26-bit I + 26-bit Q.

As a result, the two 375-channel banks each deliver 94 superchannels, while the two 175-channel banks each deliver 44 superchannels. The last superchannel in each bank contains only three DDC channels.

A superchannel enable mask word containing one enable bit for each superchannel allows independent selection of which superchannel samples are delivered across the PCIe. There are four superchannel mask words, one for each bank.

Superchannel Packets and Headers

Superchannel packets are formed by appending enabled superchannel samples sequentially from each bank. Once complete, a unique superchannel packet header is inserted at the beginning of each packet for identification.

The header contains a time stamp, a sequential packet count, the number of enabled superchannels, the DMA channel identifier, and other information. By inspecting the header, the remaining superchannel data "payload" samples can be identified and recovered by the host.

PCI Express Interface

The Model 78663 includes an industrystandard interface fully compliant with PCI Express Gen. 2 bus specifications. Supporting PCIe links up to x8, the interface includes four DMA controllers for efficient packet transfers from each of the four DDC banks to system memory.

The PCIe interface is also used as the programming interface for all status and control between the 78663 and host. >

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Specifications
Front Panel Analog Signal Inputs
Input Type: Transformer-coupled, front
panel female SSMC connectors
Transformer Type: Coil Craft
WBC4-6TLB
Full Scale Input: +8 dBm into 50 ohms
3 dB Passband: 300 kHz to 700 MHz
A/D Converters
Type: Texas Instruments ADS5485
Sampling Rate: 10 MHz to 200 MHz
Resolution: 16 bits
Sample Clock Sources: On-board clock
synthesizer
Clock Synthesizer
Clock Source: Selectable from on-board
180 MHz VCXO, front panel external
clock or LVPECL timing bus
Synchronization: VCXO can be locked
to an external 10 MHz system reference
External Clock
Type: Front panel female SSMC con-
nector, sine wave, 0 to +10 dBm, 50 ohms,
AC-coupled, accepts 180 MHz sample
clock or 10 MHz system reference
Timing Bus: 26-pin front panel connector;
LVPECL bus includes, clock/sync/gate/
PPS inputs and outputs; TTL signal for
gate/trigger and sync/PPS inputs
External Trigger Input
Type: Front panel female SSMC
connector, LVTTL
Function: Programmable functions
include: trigger, gate, sync and PPS
GSM Channel Banks
DDCs per bank: two banks of 175 DDCs
and two banks of 375 DDCs
Overall bandwidth per bank : 35 MHz
& 75 MHz for 175- & 375-channel banks
IF (Center) Freq: 45, 135 or 225 MHz

DDC Channels Channel Spacing: 200 kHz, fixed DDC Center Freqs: IF Freq ± k * 200 kHz, where k = 0 to 87, or 0 to 187 **DDC Channel Filter Characteristics** < 0.1 dB passband flatness across ±80 kHz from center (160 kHz BW) > 18 dB attenuation at ± 100 kHz > 78 dB attenuation at ±170 kHz > 83 dB attenuation at ±600 kHz > 93 dB attenuation at ±800 KHz > 96 dB attenuation at $> \pm 3$ MHz **DDC Output Rate** *f*_s: Resampled to 180 MHz*13/2160 = 1.0833333 MS/sec DDC Data Output Format: 24 bits I + 24 bits Q Superchannels Content: Four consecutive DDC channels are frequency-offset from each other and then summed together Frequency Offsets for each DDC: First: -f_s/4 (-270.8333 kHz) Second: 0 Hz Third: $+f_s/4$ (+270.8333 kHz) Fourth: $+f_s/2$ (+541.666 kHz) Superchannel Sample Rate: *f*_s Superchannel Output Format: 26 bits I + 26 bits Q Number of Superchannels per Bank: 175-Channel banks: 44; 375-Channel banks: 94 Field Programmable Gate Array: Xilinx Virtex-6 XC6VSX315T **PCI Express Interface** PCI Express Bus: Gen. 2 x8 Environmental **Operating Temp:** 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: Half length PCIe card, 4.38 x 7.13 in.

Ordering Information

	0
Model	Description
78663	1100-Channel GSM Channelizer with Quad A/D- PCIe

Model	Description
8266	PC Development System See 8266 Datasheet for
	Options

Model 53663

Model 53663 Commercial (left) and rugged version

Features

- Complete GSM channelizer with analog IF interface
- Four 180 MHz 16-bit A/Ds
- Two banks of 375 DDCs for upper GSM band
- Two banks of 175 DDCs for lower GSM band
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- PCI Express Gen. 2 x8
- 3U VPX form factor provides a compact, rugged platform

General Information

Model 53663 is a member of the Cobalt[®] family of high-performance VPX boards based on the Xilinx Virtex-6 FPGA. This fourchannel, high-speed A/D converter with 1100 GSM DDCs (digital downconverters) accepts IF signals from an RF tuner. It is ideal for capturing all transmit and receive signals in both upper and lower GSM bands.

It includes four A/Ds and four banks of DDCs. Channelizer data and control signals flow across the PCI Express Gen. 2 native interface, providing peak rates of up to 4 GB/sec.

The Cobalt Architecture

The Pentek Cobalt architecture connects all of the board's data converters, digital interfaces, clocks and timing signals to the FPGA. Here, four factory-installed GSM channelizer IP cores are supported with additional FPGA functions including packet formation, four DMA controllers, PCIe interface, gating, and triggering.

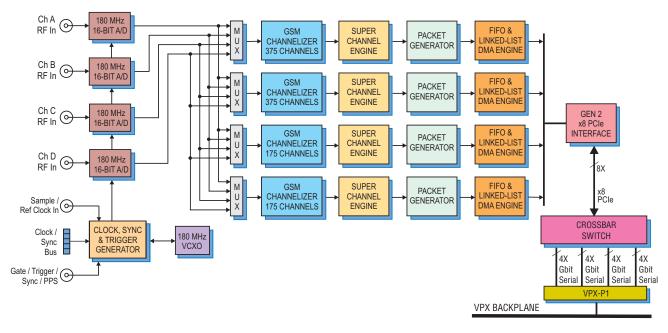
The 53663 is a complete, full-featured subsystem, ready to use with no additional FPGA develpment required.

A/D Converter Stage

The front end accepts four analog IF inputs on front panel SSMC connectors with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters clocked at 180 MHz.

The digital outputs are delivered into the FPGA for GSM channelizer signal processing.

Clocking and Synchronization


An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An on-board clock generator accepts an external 180 MHz sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board 180 MHz voltagecontrolled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a reference clock, typically 10 MHz, for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple 53663's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

GSM Channelizer Cores

The 53663 contains four powerful GSM channelizer cores, two with 375 DDCs and two with 175 DDCs. Flexible input routing allows the independent, non-blocking assignment of any A/D converter to serve as the input source for any of the four GSM channelizers. >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

1100-Channel GSM Channelizer with Quad A/D - VPX

➤ The 375-channel cores are designed for the upper GSM bands which contain two 75 MHz bands, one for uplink and one for downlink. The 175-channel cores are designed for the lower GSM band and handle two 35 MHz bands, one for uplink and one for downlink.

Before connection to the 53663, these GSM RF bands must first be separately downconverted to an IF frequency centered at 45 MHz, 135 MHz or 225 MHz using an external analog RF tuner.

These IF signals are then digitized by the 53663 A/Ds at 180 MS/sec in the first, second, or third Nyquist zones, respectively. In order to prevent aliasing, careful filtering must ensure that no signals appear in adjacent Nyquist zones.

Each of the channelizers is designed to accept real digital samples of the IF signal from the A/D converter. The first stage of the GSM channelizer is a complex mixer that shifts the center frequency of the IF signal (45, 135 or 225 MHz) to 0 Hz, thereby producing complex I+Q samples.

The DDCs split the IF input into either 175 or 375 parallel DDC baseband channels, equally spaced at 200 kHz. The DDC output sample rate is resampled to precisely 180 MHz*13/2160, or approximately 1.08333 MHz. This is four times the GSM symbol rate of 270.666 kSymbols/sec. The output passband of each DDC channel is nominally 160 kHz, with filter characteristics fully defined in the channel response chart in the specifications.

Channelizer Output Formatting

All 1100 DDCs generate parallel, complex output sample streams. At a sample rate of 1.08333 MS/sec, this represents an aggregate output rate of 9.533 GB/sec, greatly exceeding the 4 GB/sec peak rate of PCIe Gen 2 x8 interface.

To mitigate this situation, every four DDC channels are frequency-multiplexed into a single "superchannel". This is allowed because of the 4x oversampling, and results in a reduction of the aggregate PCIe traffic by a factor of 4 to 2.383 GB/sec, which is now well within the capability of the PCIe Gen 2 x8 interface.

During superchannel formation, the 24-bit I + 24-bit Q output samples from four DDCs are summed to superchannel samples with 26-bit I + 26-bit Q.

As a result, the two 375-channel banks each deliver 94 superchannels, while the two 175-channel banks each deliver 44 superchannels. The last superchannel in each bank contains only three DDC channels.

A superchannel enable mask word containing one enable bit for each superchannel allows independent selection of which superchannel samples are delivered across the PCIe. There are four superchannel mask words, one for each bank.

Superchannel Packets and Headers

Superchannel packets are formed by appending enabled superchannel samples sequentially from each bank. Once complete, a unique superchannel packet header is inserted at the beginning of each packet for identification.

The header contains a time stamp, a sequential packet count, the number of enabled superchannels, the DMA channel identifier, and other information. By inspecting the header, the remaining superchannel data "payload" samples can be identified and recovered by the host.

PCI Express Interface

The Model 53663 includes an industrystandard interface fully compliant with PCI Express Gen. 2 bus specifications. Supporting PCIe links up to x8, the interface includes four DMA controllers for efficient packet transfers from each of the four DDC banks to system memory.

The PCIe interface is also used as the programming interface for all status and control between the 53663 and host.

Fabric-Transparent Crossbar Switch

The 53663 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency. Programmable signal input equalization and output pre-emphasis settings enable optimization. Data paths can be selected as single (1X) lanes, or groups of four lanes (4X).

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

 Model
 Description

 53663
 1100-Channel GSM

 Channelizer with Quad
 A/D - VPX

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
model	Description

8267 VPX Development System. See 8267 Datasheet for Options

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits Sample Clock Sources: On-board clock synthesizer **Clock Synthesizer** Clock Source: Selectable from on-board 180 MHz VCXO, front panel external clock or LVPECL timing bus Synchronization: VCXO can be locked to an external 10 MHz system reference **External Clock** Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, 50 ohms, AC-coupled, accepts 180 MHz sample clock or 10 MHz system reference Timing Bus: 26-pin front panel connector; LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs **External Trigger Input** Type: Front panel female SSMC connector, LVTTL Function: Programmable functions include: trigger, gate, sync and PPS **GSM Channel Banks** DDCs per bank: two banks of 175 DDCs and two banks of 375 DDCs Overall bandwidth per bank: 35 MHz & 75 MHz for 175- & 375-channel banks IF (Center) Freq: 45, 135 or 225 MHz **DDC Channels** Channel Spacing: 200 kHz, fixed

► Specifications

DDC Center Freqs: IF Freq \pm k * 200 kHz, where k = 0 to 87, or 0 to 187 **DDC Channel Filter Characteristics:** < 0.1 dB passband flatness across

±80 kHz from center (160 kHz BW) > 18 dB attenuation at ±100 kHz

- > 78 dB attenuation at ±170 kHz
- > 83 dB attenuation at ±600 kHz
- > 93 dB attenuation at ± 800 KHz

> 95 ub attenuation at ± 000 KHz

> 96 dB attenuation at > ± 3 MHz DDC Output Rate f_s : Resampled to 180 MHz*13/2160 = 1.0833333 MS/sec DDC Data Output Format: 24 bits I + 24 bits Q Superchannels

Content: Four consecutive DDC channels are frequency-offset from each other and then summed together Frequency Offsets for each DDC: First: -f_s/4 (-270.8333 kHz) Second: 0 Hz Third: $+f_s/4$ (+270.8333 kHz) Fourth: $+f_s/2$ (+541.666 kHz) Superchannel Sample Rate: *f*_s **Superchannel Output Format:** 26 bits I + 26 bits Q Number of Superchannels per Bank: 175-Channel banks: 44; 375-Channel banks: 94 Field Programmable Gate Array: Xilinx Virtex-6 XC6VSX315T **PCI Express Interface** PCI Express Bus: Gen. 2 x8 Environmental **Operating Temp:** 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	52xxx	53xxx
Form Factor	3U VPX	
# of XMCs	One XMC	
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x4 or x8
Option -104 path	24 pairs on VPX P2	20 pairs on VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Model 52663

Model 52663 Commercial (left) and rugged version

Features

- Complete GSM channelizer with analog IF interface
- Four 180 MHz 16-bit A/Ds
- Two banks of 375 DDCs for upper GSM band
- Two banks of 175 DDCs for lower GSM band
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- PCI Express Gen. 2 x4
- 3U VPX form factor provides a compact, rugged platform

General Information

Model 52663 is a member of the Cobalt[®] family of high-performance VPX boards based on the Xilinx Virtex-6 FPGA. This fourchannel, high-speed A/D converter with 1100 GSM DDCs (digital downconverters) accepts IF signals from an RF tuner. It is ideal for capturing all transmit and receive signals in both upper and lower GSM bands.

It includes four A/Ds and four banks of DDCs. Channelizer data and control signals flow across the PCI Express Gen. 2 native interface, providing peak rates of up to 2 GB/sec.

The Cobalt Architecture

The Pentek Cobalt architecture connects all of the board's data converters, digital interfaces, clocks and timing signals to the FPGA. Here, four factory-installed GSM channelizer IP cores are supported with additional FPGA functions including packet formation, four DMA controllers, PCIe interface, gating, and triggering.

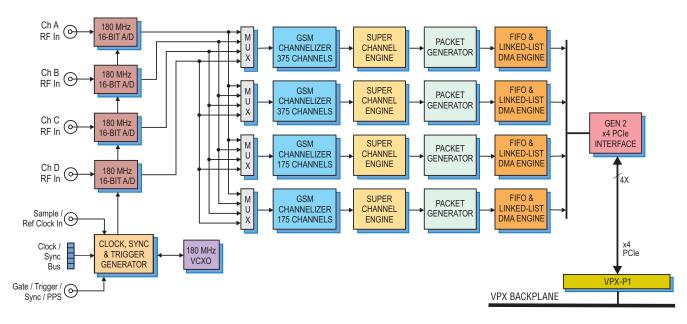
The 52663 is a complete, full-featured subsystem, ready to use with no additional FPGA develpment required.

A/D Converter Stage

The front end accepts four analog IF inputs on front panel SSMC connectors with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters clocked at 180 MHz.

The digital outputs are delivered into the FPGA for GSM channelizer signal processing.

Clocking and Synchronization


An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An on-board clock generator accepts an external 180 MHz sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board 180 MHz voltagecontrolled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a reference clock, typically 10 MHz, for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple 52663's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

GSM Channelizer Cores

The 52663 contains four powerful GSM channelizer cores, two with 375 DDCs and two with 175 DDCs. Flexible input routing allows the independent, non-blocking assignment of any A/D converter to serve as the input source for any of the four GSM channelizers. >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com ➤ The 375-channel cores are designed for the upper GSM bands which contain two 75 MHz bands, one for uplink and one for downlink. The 175-channel cores are designed for the lower GSM band and handle two 35 MHz bands, one for uplink and one for downlink.

Before connection to the 52663, these GSM RF bands must first be separately downconverted to an IF frequency centered at 45 MHz, 135 MHz or 225 MHz using an external analog RF tuner.

These IF signals are then digitized by the 52663 A/Ds at 180 MS/sec in the first, second, or third Nyquist zones, respectively. In order to prevent aliasing, careful filtering must ensure that no signals appear in adjacent Nyquist zones.

Each of the channelizers is designed to accept real digital samples of the IF signal from the A/D converter. The first stage of the GSM channelizer is a complex mixer that shifts the center frequency of the IF signal (45, 135 or 225 MHz) to 0 Hz, thereby producing complex I+Q samples.

The DDCs split the IF input into either 175 or 375 parallel DDC baseband channels, equally spaced at 200 kHz. The DDC output sample rate is resampled to precisely 180 MHz*13/2160, or approximately 1.08333 MHz. This is four times the GSM symbol rate of 270.666 kSymbols/sec. The output passband of each DDC channel is nominally 160 kHz, with filter characteristics fully defined in the channel response chart in the specifications.

Channelizer Output Formatting

All 1100 DDCs generate parallel, complex output sample streams. At a sample rate of 1.08333 MS/sec, this represents an aggregate output rate of 9.533 GB/sec, greatly exceeding the 2 GB/sec peak rate of PCIe Gen 2 x4 interface.

To mitigate this situation, every four DDC channels are frequency-mutliplexed into a single "superchannel". This is allowed because of the 4x oversampling, and results in a reduction of the aggregate PCIe traffic by a factor of 4 to 2.383 GB/sec, which is slightly above the capability of the PCIe Gen 2 x4 interface.

During superchannel formation, the 24-bit I + 24-bit Q output samples from four DDCs are summed to superchannel samples with 26-bit I + 26-bit Q.

As a result, the two 375-channel banks each deliver 94 superchannels, while the two 175-channel banks each deliver 44 superchannels. The last superchannel in each bank contains only three DDC channels.

A superchannel enable mask word containing one enable bit for each superchannel allows independent selection of which superchannel samples are delivered across the PCIe. There are four superchannel mask words, one for each bank.

Superchannel Packets and Headers

Superchannel packets are formed by appending enabled superchannel samples sequentially from each bank. Once complete, a unique superchannel packet header is inserted at the beginning of each packet for identification.

The header contains a time stamp, a sequential packet count, the number of enabled superchannels, the DMA channel identifier, and other information. By inspecting the header, the remaining superchannel data "payload" samples can be identified and recovered by the host.

PCI Express Interface

The Model 52663 includes an industrystandard interface fully compliant with PCI Express Gen. 2 bus specifications. Supporting PCIe links up to x4, the interface includes four DMA controllers for efficient packet transfers from each of the four DDC banks to system memory.

The PCIe interface is also used as the programming interface for all status and control between the 52663 and host. >

<u>Model 8267</u>

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

 Model
 Description

 52663
 1100-Channel GSM

 Channelizer with Quad
 A/D - VPX

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8267 VPX Development System. See 8267 Datasheet for Options ► Specifications Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits Sample Clock Sources: On-board clock synthesizer **Clock Synthesizer** Clock Source: Selectable from on-board 180 MHz VCXO, front panel external clock or LVPECL timing bus Synchronization: VCXO can be locked to an external 10 MHz system reference External Clock Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, 50 ohms, AC-coupled, accepts 180 MHz sample clock or 10 MHz system reference Timing Bus: 26-pin front panel connector; LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs **External Trigger Input** Type: Front panel female SSMC connector, LVTTL Function: Programmable functions include: trigger, gate, sync and PPS **GSM Channel Banks** DDCs per bank: two banks of 175 DDCs and two banks of 375 DDCs Overall bandwidth per bank: 35 MHz & 75 MHz for 175- & 375-channel banks IF (Center) Freq: 45, 135 or 225 MHz **DDC Channels** Channel Spacing: 200 kHz, fixed **DDC Center Freqs:** IF Freq ± k * 200 kHz, where k = 0 to 87, or 0 to 187 **DDC Channel Filter Characteristics:** < 0.1 dB passband flatness across ±80 kHz from center (160 kHz BW) > 18 dB attenuation at ±100 kHz > 78 dB attenuation at ±170 kHz > 83 dB attenuation at ± 600 kHz > 93 dB attenuation at ±800 KHz > 96 dB attenuation at $> \pm 3$ MHz DDC Output Rate fs: Resampled to 180 MHz*13/2160 = 1.0833333 MS/sec

DDC Data Output Format: 24 bits I + 24 bits Q

Superchannels

Content: Four consecutive DDC channels are frequency-offset from each other and then summed together Frequency Offsets for each DDC: First: -f_s/4 (-270.8333 kHz) Second: 0 Hz Third: $+f_s/4$ (+270.8333 kHz) Fourth: $+f_s/2$ (+541.666 kHz) Superchannel Sample Rate: *f*_s **Superchannel Output Format:** 26 bits I + 26 bits Q Number of Superchannels per Bank: 175-Channel banks: 44; 375-Channel banks: 94 Field Programmable Gate Array: Xilinx Virtex-6 XC6VSX315T **PCI Express Interface** PCI Express Bus: Gen. 2 x8 Environmental **Operating Temp:** 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	52xxx	53xxx
Form Factor	3U VPX	
# of XMCs	One XMC	
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x4 or x8
Option -104 path	24 pairs on VPX P2	20 pairs on VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Models 57663 & 58663

Model 58663

Features

- Four or eight 180 MHz 16-bit A/Ds
- Two or four banks of 375 DDCs for upper GSM band
- Two or four banks of 175 DDCs for lower GSM band
- PCI Express (Gen. 1 & 2) interface up to x4
- LVPECL clock/sync bus for multiboard synchronization
- Ruggedized and conductioncooled versions available

General Information

Models 57663 and 58663 are members of the Cobalt[®] family of high-performance 6U OpenVPX boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71663 XMC modules mounted on a VPX carrier board.

Quad or Octal A/D - 6U OpenVPX

1100- or 2200-Channel GSM Channelizer with

Model 57663 is a 6U board with one Model 71663 module while the Model 58663 is a 6U board with two XMC modules rather than one.

This quad or octal, high-speed A/D converter with 1100 or 2200 GSM DDCs (digital downconverters) accepts IF signals from an RF tuner. It is ideal for capturing all transmit and receive signals in both upper and lower GSM bands.

The Cobalt Architecture

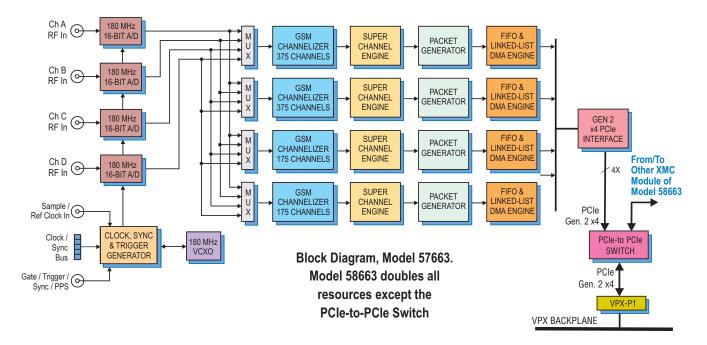
The Pentek Cobalt architecture connects all of the board's data converters, digital interfaces, clocks and timing signals to the FPGA. Here, four or eight factory-installed GSM channelizer IP cores are supported with additional FPGA functions including packet formation, four or eight DMA controllers, PCIe interface, gating, and triggering.

These models are complete, full-featured subsystems, ready to use with no additional FPGA development required.

A/D Converter Stage

The front end accepts four or eight analog IF inputs on front panel SSMC connectors

with transformer coupling into four or eight Texas Instruments ADS5485 200 MHz, 16-bit A/D converters clocked at 180 MHz.


The digital outputs are delivered into the FPGA for GSM channelizer signal processing.

Clocking and Synchronization

The internal timing bus provides all timing and synchronization required by the A/D converters. It includes clock, sync and gate or trigger signals. One or two on-board clock generators accept external 180 MHz sample clocks from the front panel SSMC connectors. The clocks can be used directly by the A/Ds or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board 180 MHz voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a reference clock, typically 10 MHz, for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/ Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple boards can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards. >

Pentek, Inc. One Park Way

Upper Saddle River
New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904

Email: info@pentek.com

GSM Channelizer Cores

These models contain four or eight powerful GSM channelizer cores, two or four with 375 DDCs and two or four with 175 DDCs. Flexible input routing allows the independent, non-blocking assignment of any A/D converter to serve as the input source for any of four GSM channelizers.

The 375-channel cores are designed for the upper GSM bands which contain two 75 MHz bands, one for uplink and one for downlink. The 175-channel cores are designed for the lower GSM band and handle two 35 MHz bands, one for uplink and one for downlink.

Before connection to these models, the GSM RF bands must first be separately downconverted to an IF frequency centered at 45 MHz, 135 MHz or 225 MHz using an external analog RF tuner.

These IF signals are then digitized by the four or eight A/Ds at 180 MS/sec in the first, second, or third Nyquist zones, respectively. In order to prevent aliasing, careful filtering must insure that no signals appear in adjacent Nyquist zones.

Each of the channelizers is designed to accept real digital samples of the IF signal from the A/D converter. The first stage of the GSM channelizer is a complex mixer that shifts the center frequency of the IF signal (45, 135 or 225 MHz) to 0 Hz, producing complex I+Q samples.

The DDCs split the IF input into either 175 or 375 parallel DDC baseband channels, equally spaced at 200 kHz. The DDC output sample rate is resampled to precisely 180 MHz*13/2160, or approximately 1.08333 MHz. This is four times the GSM symbol rate of 270.666 kSymbols/sec. The output passband of each DDC channel is nominally 160 kHz, with filter characteristics fully defined in the channel response chart in the specifications.

Channelizer Output Formatting

All 1100 DDCs generate parallel, complex output sample streams. At a sample rate of 1.08333 MS/sec, this represents an aggregate output rate of 9.533 GB/sec, greatly exceeding the 4 GB/sec peak rate of PCIe Gen 2 x8 interface. To mitigate this situation, every four DDC channels are frequency-multiplexed into a single "superchannel". This is allowed because of the 4x over sampling, and results in a reduction of the aggregate traffic by a factor of 4 to 2.383 GB/sec.

During superchannel formation, the 24-bit I + 24-bit Q output samples from four DDCs are summed to superchannel samples with 26-bits I + 26-bits Q.

As a result, the two 375-channel banks each deliver 94 superchannels, while the two 175-channel banks each deliver 44 superchannels. The last superchannel in each bank only contains three DDC channels.

A superchannel enable mask word containing one enable bit for each superchannel allows independent selection of which superchannel samples are delivered across the PCI-X bus. There are four superchannel mask words, one for each bank.

Superchannel Packets and Headers

Superchannel packets are formed by appending enabled superchannel samples sequentially from each bank. Once compete, a unique superchannel packet header is inserted at the beginning of each packet for identification.

The header contains a time stamp, a sequential packet count, the number of enabled superchannels, the DMA channel identifier, and other information. By inspecting the header, the remaining superchannel data "payload" samples can be identified and recovered by the host.

PCI Express Interface

A/D Converters (4 or 8)

These models include an industrystandard interface fully compliant with PCI Express Gen. 1 and 2 bus specifications. Supporting PCIe links up to x4, the interface includes multiple DMA controllers for efficient transfers to and from the board.

The PCIe interface is also used as the programming interface for all status and control between these models and host. >

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

1100- or 2200-Channel GSM Channelizer with Quad or Octal A/D - 6U OpenVPX

Model 8264

The Model 8264 is a fullyintegrated development system for Pentek Cobalt and Onyx 6U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Description
1100-Channel GSM
Channelizer with Quad
A/D - 6U VPX
2200-Channel GSM
Channelizer with Octal
A/D - 6U VPX

Contact Pentek for availability of rugged and conduction-cooled versions

ModelDescription8264VPX Development System.

See 8264 Datasheet for Options

Specifications

Model 57663: 4 A/Ds, 1100 Channels Model 58663: 8 A/Ds, 2200 Channels Front Panel Analog Signal Inputs (4 or 8) Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters (4 or 8) Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz **Resolution:** 16 bits Sample Clock Sources (1 or 2) On-board clock synthesizer Clock Synthesizers (1 or 2) Clock Source: Selectable from on-board 180 MHz VCXO, front panel external clock or LVPECL timing bus Synchronization: VCXO can be locked to an external 10 MHz system reference External Clocks (1 or 2) Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, 50 ohms, AC-coupled, accepts 180 MHz sample clock or 10 MHz system reference Timing Bus (1 or 2): 26-pin front panel connector; LVPECL bus includes, clock/ sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs **External Trigger Inputs (1 or 2)** Type: Front panel female SSMC connector, LVTTL Function: Programmable functions include: trigger, gate, sync and PPS GSM Channel Banks (1 or 2) DDCs per bank: two banks of 175 DDCs and two banks of 375 DDCs Overall bandwidth per bank: 35 MHz & 75 MHz for 175- & 375-channel banks

IF (Center) Freq: 45, 135 or 225 MHz

DDC Channels Channel Spacing: 200 kHz, fixed **DDC Center Freqs:** IF Freq ± k * 200 kHz, where k = 0 to 87, or 0 to 187 **DDC Channel Filter Characteristics** < 0.1 dB passband flatness across ±80 kHz from center (160 kHz BW) > 18 dB attenuation at ± 100 kHz > 78 dB attenuation at ± 170 kHz > 83 dB attenuation at ± 600 kHz > 93 dB attenuation at ±800 KHz > 96 dB attenuation at $> \pm 3$ MHz DDC Output Rate f_s: Resampled to 180 MHz*13/2160 = 1.0833333 MS/sec DDC Data Output Format: 24 bits I + 24 bits Q Superchannels Content: Four consecutive DDC channels are frequency-offset from each other and then summed together Frequency Offsets for each DDC: First: -f_s/4 (-270.8333 kHz) Second: 0 Hz Third: $+f_s/4$ (+270.8333 kHz) Fourth: $+f_s/2$ (+541.666 kHz) Superchannel Sample Rate: *f*_s **Superchannel Output Format:** 26 bits I + 26 bits Q Number of Superchannels per Bank: 175-Channel banks: 44; 375-Channel banks: 94 Field Programmable Gate Arrays (1 or 2) Xilinx Virtex-6 XC6VSX315T **PCI-Express Interface** PCI Express Bus: Gen. 1 or 2: x4 Environmental: Level L1 & L2 air-cooled; Level L3 ruggedized, conduction-cooled Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

Models 72663, 73663 and 74663

Features

- Complete GSM channelizer with analog IF interface
- Four or eight 180 MHz 16-bit A/Ds
- Two or four banks of 375 DDCs for upper GSM band
- Two or four banks of 175 DDCs for lower GSM band
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization

1100- or 2200-Channel GSM Channelizer with Quad or Octal A/D - cPCI

General Information

Models 72663, 73663 and 74663 are members of the Cobalt[®] family of high-performance CompactPCI boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71663 XMC modules mounted on a cPCI carrier board.

Model 72663 is a 6U cPCI board while the Model 73663 is a 3U cPCI board; both are equipped with one Model 71663 XMC. Model 74663 is a 6U cPCI board with two XMC modules rather than one.

This quad or octal, high-speed A/D converter with 1100 or 2200 GSM DDCs (digital downconverters) accepts IF signals from an RF tuner. It is ideal for capturing all transmit and receive signals in both upper and lower GSM bands.

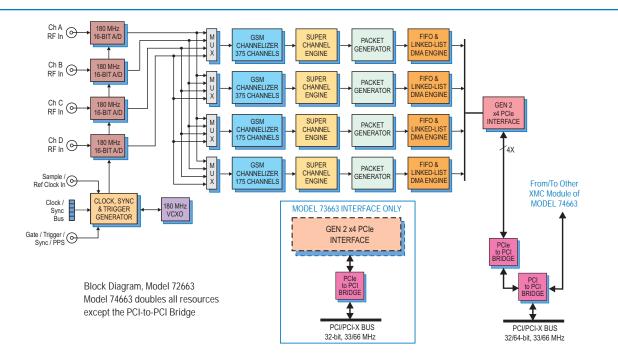
The Cobalt Architecture

The Pentek Cobalt architecture connects all of the board's data converters, digital interfaces, clocks and timing signals to the FPGA. Here, four or eight factory-installed GSM channelizer IP cores are supported with additional FPGA functions including packet formation, four or eight DMA controllers, PCIe interface, gating, and triggering.

These models are complete, full-featured subsystems, ready to use with no additional FPGA develpment required.

A/D Converter Stage

The front end accepts four or eight analog IF inputs on front panel SSMC connectors with transformer coupling into four or eight Texas Instruments ADS5485 200 MHz, 16-bit A/D converters clocked at 180 MHz.


The digital outputs are delivered into the FPGA for GSM channelizer signal processing.

Clocking and Synchronization

The internal timing bus provides all timing and synchronization required by the A/D converters. It includes clock, sync and gate or trigger signals. One or two on-board clock generators accept external 180 MHz sample clocks from the front panel SSMC connectors. The clocks can be used directly by the A/Ds or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board 180 MHz voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a reference clock, typically 10 MHz, for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/ Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple boards can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards. >

Pentek, Inc. One Park Way

Upper Saddle River
New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904

Email: info@pentek.com

GSM Channelizer Cores

These models contain four or eight powerful GSM channelizer cores, two or four with 375 DDCs and two or four with 175 DDCs. Flexible input routing allows the independent, non-blocking assignment of any A/D converter to serve as the input source for any of four GSM channelizers.

The 375-channel cores are designed for the upper GSM bands which contain two 75 MHz bands, one for uplink and one for downlink. The 175-channel cores are designed for the lower GSM band and handle two 35 MHz bands, one for uplink and one for downlink.

Before connection to these models, the GSM RF bands must first be separately downconverted to an IF frequency centered at 45 MHz, 135 MHz or 225 MHz using an external analog RF tuner.

These IF signals are then digitized by the four or eight A/Ds at 180 MS/sec in the first, second, or third Nyquist zones, respectively. In order to prevent aliasing, careful filtering must insure that no signals appear in adjacent Nyquist zones.

Each of the channelizers is designed to accept real digital samples of the IF signal from the A/D converter. The first stage of the GSM channelizer is a complex mixer that shifts the center frequency of the IF signal (45, 135 or 225 MHz) to 0 Hz, producing complex I+Q samples.

The DDCs split the IF input into either 175 or 375 parallel DDC baseband channels, equally spaced at 200 kHz. The DDC output sample rate is resampled to precisely 180 MHz*13/2160, or approximately 1.08333 MHz. This is four times the GSM symbol rate of 270.666 kSymbols/sec. The output passband of each DDC channel is nominally 160 kHz, with filter characteristics fully defined in the channel response chart in the specifications.

Channelizer Output Formatting

All 1100 DDCs generate parallel, complex output sample streams. At a sample rate of 1.08333 MS/sec, this represents an aggregate output rate of 9.533 GB/sec, greatly exceeding the 4 GB/sec peak rate of PCIe Gen 2 x8 interface.

To mitigate this situation, every four DDC channels are frequency-mutliplexed into a single "superchannel". This is allowed because of the 4x over sampling, and results in a reduction of the aggregate traffic by a factor of 4 to 2.383 GB/sec.

During superchannel formation, the 24-bit I + 24-bit Q output samples from four DDCs are summed to superchannel samples with 26-bits I + 26-bits Q.

As a result, the two 375-channel banks each deliver 94 superchannels, while the two 175-channel banks each deliver 44 superchannels. The last superchannel in each bank only contains three DDC channels.

A superchannel enable mask word containing one enable bit for each superchannel allows independent selection of which superchannel samples are delivered across the PCI-X bus. There are four superchannel mask words, one for each bank.

Superchannel Packets and Headers

Superchannel packets are formed by appending enabled superchannel samples sequentially from each bank. Once compete, a unique superchannel packet header is inserted at the beginning of each packet for identification.

The header contains a time stamp, a sequential packet count, the number of enabled superchannels, the DMA channel identifier, and other information. By inspecting the header, the remaining superchannel data "payload" samples can be identified and recovered by the host.

PCI-X Interface

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported. Model 73663: 32 bits only.

The PCI-X interface is also used as the programming interface for all status and control between these models and host. >

Specifications

Model 72663 or Model 73663: 4 A/Ds Model 74663: 8 A/Ds Front Panel Analog Signal Inputs (4 or 8) Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters (4 or 8) Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits Sample Clock Sources (1 or 2) On-board clock synthesizer Clock Synthesizers (1 or 2) Clock Source: Selectable from on-board 180 MHz VCXO, front panel external clock or LVPECL timing bus Synchronization: VCXO can be locked to an external 10 MHz system reference External Clocks (1 or 2) Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, 50 ohms, AC-coupled, accepts 180 MHz sample clock or 10 MHz system reference Timing Bus (1 or 2): 26-pin front panel connector; LVPECL bus includes, clock/ sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs **External Trigger Inputs (1 or 2)** Type: Front panel female SSMC connector, LVTTL Function: Programmable functions include: trigger, gate, sync and PPS GSM Channel Banks (1 or 2) DDCs per bank: two banks of 175 DDCs and two banks of 375 DDCs Overall bandwidth per bank: 35 MHz & 75 MHz for 175- & 375-channel banks

IF (Center) Freq: 45, 135 or 225 MHz

DDC Channels Channel Spacing: 200 kHz, fixed DDC Center Freqs: IF Freq ± k * 200 kHz, where k = 0 to 87, or 0 to 187**DDC Channel Filter Characteristics** < 0.1 dB passband flatness across ±80 kHz from center (160 kHz BW) > 18 dB attenuation at ±100 kHz > 78 dB attenuation at ± 170 kHz > 83 dB attenuation at ±600 kHz > 93 dB attenuation at ±800 KHz > 96 dB attenuation at $> \pm$ 3 MHz **DDC Output Rate** *f*_s: Resampled to 180 MHz*13/2160 = 1.0833333 MS/sec DDC Data Output Format: 24 bits I + 24 bits Q Superchannels Content: Four consecutive DDC channels are frequency-offset from each other and then summed together Frequency Offsets for each DDC: First: -f_s/4 (-270.8333 kHz) Second: 0 Hz Third: $+f_s/4$ (+270.8333 kHz) Fourth: $+f_s/2$ (+541.666 kHz) Superchannel Sample Rate: *f*_s **Superchannel Output Format:** 26 bits I + 26 bits Q Number of Superchannels per Bank: 175-Channel banks: 44; 375-Channel banks: 94 Field Programmable Gate Arrays (1 or 2) Xilinx Virtex-6 XC6VSX315T **PCI-X** Interface PCI-X Bus: 32 or 64 bits at 33 or 66 MHz Model 73663: 32 bits only Environmental **Operating Temp:** 0° to 50° C **Storage Temp:** –20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: Standard 6U or 3U cPCI board

Ordering Information

	-
Model	Description
72663	1100-Channel GSM Channelizer with Quad A/D - 6U cPCI
73663	1100-Channel GSM Channelizer with Quad A/D - 3U cPCI
74663	2200-Channel GSM Channelizer with Octal A/D - 6U cPCI

Model 56663

Features

- Complete GSM channelizer with analog IF interface
- Four 180 MHz 16-bit A/Ds
- Two banks of 375 DDCs for upper GSM band
- Two banks of 175 DDCs for lower GSM band
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multimodule synchronization
- PCI Express Gen. 2 x8
- AMC.1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)

General Information

Model 56663 is a member of the Cobalt[®] family of high-performance AMC modules based on the Xilinx Virtex-6 FPGA. This fourchannel, high-speed A/D converter with 1100 GSM DDCs (digital downconverters) accepts IF signals from an RF tuner. It is ideal for capturing all transmit and receive signals in both upper and lower GSM bands.

It includes four A/Ds and four banks of DDCs. Channelizer data and control signals flow across the PCI Express Gen. 2 native interface, providing peak rates of up to 4 GB/sec.

The Cobalt Architecture

The Pentek Cobalt architecture connects all of the board's data converters, digital interfaces, clocks and timing signals to the FPGA. Here, four factory-installed GSM channelizer IP cores are supported with additional FPGA functions including packet formation, four DMA controllers, PCIe interface, gating, and triggering.

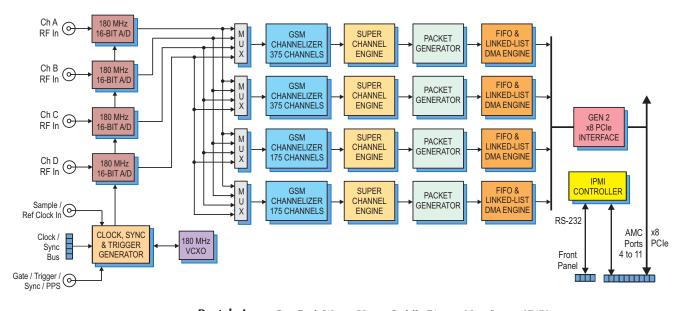
The 56663 is a complete, full-featured subsystem, ready to use with no additional FPGA develpment required.

A/D Converter Stage

The front end accepts four analog IF inputs on front panel SSMC connectors with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters clocked at 180 MHz.

The digital outputs are delivered into the FPGA for GSM channelizer signal processing.

Clocking and Synchronization


An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An on-board clock generator accepts an external 180 MHz sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board 180 MHz voltagecontrolled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a reference clock, typically 10 MHz, for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple modules to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple modules.

Multiple 56663's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected modules.

GSM Channelizer Cores

The 56663 contains four powerful GSM channelizer cores, two with 375 DDCs and two with 175 DDCs. Flexible input routing allows the independent, non-blocking assignment of any A/D converter to serve as the input source for any of the four GSM channelizers. >

1100-Channel GSM Channelizer with Quad A/D - AMC

➤ The 375-channel cores are designed for the upper GSM bands which contain two 75 MHz bands, one for uplink and one for downlink. The 175-channel cores are designed for the lower GSM band and handle two 35 MHz bands, one for uplink and one for downlink.

Before connection to the 56663, these GSM RF bands must first be separately downconverted to an IF frequency centered at 45 MHz, 135 MHz or 225 MHz using an external analog RF tuner.

These IF signals are then digitized by the 56663 A/Ds at 180 MS/sec in the first, second, or third Nyquist zones, respectively. In order to prevent aliasing, careful filtering must ensure that no signals appear in adjacent Nyquist zones.

Each of the channelizers is designed to accept real digital samples of the IF signal from the A/D converter. The first stage of the GSM channelizer is a complex mixer that shifts the center frequency of the IF signal (45, 135 or 225 MHz) to 0 Hz, thereby producing complex I+Q samples.

The DDCs split the IF input into either 175 or 375 parallel DDC baseband channels, equally spaced at 200 kHz. The DDC output sample rate is resampled to precisely 180 MHz*13/2160, or approximately 1.08333 MHz. This is four times the GSM symbol rate of 270.666 kSymbols/sec. The output passband of each DDC channel is nominally 160 kHz, with filter characteristics fully defined in the channel response chart in the specifications.

Channelizer Output Formatting

All 1100 DDCs generate parallel, complex output sample streams. At a sample rate of 1.08333 MS/sec, this represents an aggregate output rate of 9.533 GB/sec, greatly exceeding the 4 GB/sec peak rate of PCIe Gen 2 x8 interface.

To mitigate this situation, every four DDC channels are frequency-mutliplexed into a single "superchannel". This is allowed because of the 4x oversampling, and results in a reduction of the aggregate PCIe traffic by a factor of 4 to 2.383 GB/sec, which is now well within the capability of the PCIe Gen 2 x8 interface.

During superchannel formation, the 24-bit I + 24-bit Q output samples from four DDCs are summed to superchannel samples with 26-bit I + 26-bit Q.

As a result, the two 375-channel banks each deliver 94 superchannels, while the two 175-channel banks each deliver 44 superchannels. The last superchannel in each bank contains only three DDC channels.

A superchannel enable mask word containing one enable bit for each superchannel allows independent selection of which superchannel samples are delivered across the PCIe. There are four superchannel mask words, one for each bank.

Superchannel Packets and Headers

Superchannel packets are formed by appending enabled superchannel samples sequentially from each bank. Once complete, a unique superchannel packet header is inserted at the beginning of each packet for identification.

The header contains a time stamp, a sequential packet count, the number of enabled superchannels, the DMA channel identifier, and other information. By inspecting the header, the remaining superchannel data "payload" samples can be identified and recovered by the host.

PCI Express Interface

The Model 56663 includes an industrystandard interface fully compliant with PCI Express Gen. 2 bus specifications. Supporting PCIe links up to x8, the interface includes four DMA controllers for efficient packet transfers from each of the four DDC banks to system memory.

The PCIe interface is also used as the programming interface for all status and control between the 56663 and host.

AMC Interface

The Model 56663 complies with the AMC.1 specification by providing an x8 PCIe connection to AdvancedTCA carriers or μ TCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller).

DDC Channels

Specifications Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits Sample Clock Sources: On-board clock synthesizer Clock Synthesizer Clock Source: Selectable from on-board 180 MHz VCXO, front panel external clock or LVPECL timing bus Synchronization: VCXO can be locked to an external 10 MHz system reference **External Clock** Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, 50 ohms, AC-coupled, accepts 180 MHz sample clock or 10 MHz system reference Timing Bus: 26-pin front panel connector; LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs **External Trigger Input** Type: Front panel female SSMC connector, LVTTL Function: Programmable functions include: trigger, gate, sync and PPS **GSM Channel Banks** DDCs per bank: two banks of 175 DDCs and two banks of 375 DDCs Overall bandwidth per bank: 35 MHz & 75 MHz for 175- & 375-channel banks **IF (Center) Freq:** 45, 135 or 225 MHz

Channel Spacing: 200 kHz, fixed DDC Center Freqs: IF Freq ± k * 200 kHz, where k = 0 to 87, or 0 to 187 **DDC Channel Filter Characteristics** < 0.1 dB passband flatness across ±80 kHz from center (160 kHz BW) > 18 dB attenuation at ±100 kHz > 78 dB attenuation at ±170 kHz > 83 dB attenuation at ± 600 kHz > 93 dB attenuation at ±800 KHz > 96 dB attenuation at $> \pm$ 3 MHz **DDC Output Rate** *f*_s: Resampled to 180 MHz*13/2160 = 1.0833333 MS/sec DDC Data Output Format: 24 bits I + 24 bits QSuperchannels Content: Four consecutive DDC channels are frequency-offset from each other and then summed together Frequency Offsets for each DDC: First: -f_s/4 (-270.8333 kHz) Second: 0 Hz Third: $+f_s/4$ (+270.8333 kHz) Fourth: $+f_s/2$ (+541.666 kHz) Superchannel Sample Rate: *f*_s **Superchannel Output Format:** 26 bits I + 26 bits Q Number of Superchannels per Bank: 175-Channel banks: 44; 375-Channel banks: 94 Field Programmable Gate Array: Xilinx Virtex-6 XC6VSX315T **PCI Express Interface** PCI Express Bus: Gen. 2 x8 **AMC** Interface Type: AMC.1 Module Management: IPMI Version 2.0 Environmental **Operating Temp:** 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: Single-width, full-height AMC module, 2.89 in. x 7.11 in.

Ordering Information

Model Description

56663 1100-Channel GSM Channelizer with Quad A/D - AMC

Contact Pentek for availability of rugged and conduction-cooled versions

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four 1.25 GHz 16-bit D/As
- Four digital upconverters
- Programmable output levels
- 250 MHz max. output bandwidth
- 2 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 71670 is a member of the Cobalt[®] family of high performance XMC modules based on the Xilinx Virtex-6 FPGA. This 4-channel, high-speed data converter is suitable for connection to transmit HF or IF ports of a communications or radar system. Its built-in data playback features offer an ideal turnkey solution for demanding transmit applications.

It includes four D/As, four digital upconverters and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 71670 includes general purpose and gigabit serial connectors for application-specific I/O.

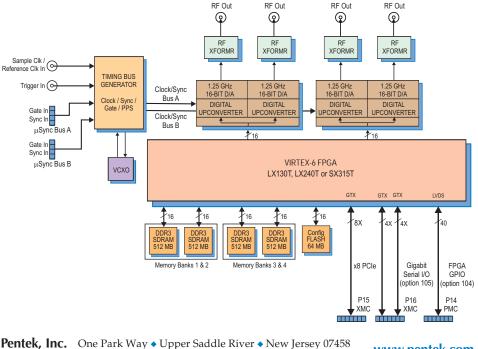
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 71670 factory-installed functions include four D/A waveform playback IP modules, to support waveform generation through the D/A converters. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions,

a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 71670 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs the P14 PMC connector with 20 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with dual 4X gigabit links to the FPGA to support serial protocols. >

Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

Digital Upconverter and D/A Stage

Two Texas Instruments DAC3484s provide four DUC (digital upconverter) and D/A channels. Each channel accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stage.

When operating as a DUC, it interpolates and translates real or complex baseband input signals to a user selectable IF center frequency. It delivers real or quadrature (I+Q) analog outputs to a 16-bit D/A converter.

If translation is disabled, each D/A acts as an interpolating 16-bit D/A with output sampling rates up to 1.25 GHz. In both modes, the D/A provides interpolation factors of 2x, 4x, 8x and 16x. Analog output is through four front panel SSMC connectors.

Clocking and Synchronization

An internal timing bus provides all required D/A clocking. The bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided by 2, 4, 8, or 16 to provide lower frequency D/A clocks.

> DATA UNPACKING

& FLOW CONTROL

MUX

LINKED-LIST DMA ENGINE

WAVEFORM

PLAYBACK

IP MODULE

VIRTEX-6 FPGA DATAFLOW DETAIL

Memory Bank 3 Memor

Memory Bank 1 + Bank 2

TEST SIGNAL GENERATOF

> MEMORY CONTROL

> > to

Mem

Bank '

16 to D/A Ch 1 & 2

DATA INTERLEAVER

MEMORY

Mem

Bank 2

A pair of front panel μ Sync connectors allows multiple modules to be synchronized. They accept CML inputs that drive the board's sync and trigger/gate signals. The Pentek Models 7192 or 9192 Cobalt Synchronizers can drive multiple 71670 μ Sync connectors enabling large, multichannel synchronous configurations.

Memory Resources

The 71670 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the module's DMA and waveform playback capabilities. Waveform tables can be loaded into the memories with playback managed by the linked list controllers.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

XMC Interface

The Model 71670 complies with the VITA 42.0 XMC specification. Two connectors each provide dual 4X links or a single 8X link with up to a 3.125 GHz bit clock. With dual XMC connectors, the 71670 supports x8 PCIe on the first XMC connector leaving the second connector free to support user-installed transfer protocols specific to the target application.

16 to D/A Ch 3 & 4

DATA

& FLOW CONTROL

MUX

LINKED-LIST DMA ENGINE

WAVEFORM

PLAYBACK IP MODULE 4

DATA INTERLEAVER

> MEMORY CONTROL

> > to

Mem

(supports user installed IP)

4X

Bank 4

DATA UNPACKING

& FLOW CONTROL

MUX

LINKED-LIST DMA ENGINE

WAVEFORM

PLAYBACK

Gigabit Serial I/O

D/A Waveform Playback IP Module

The Model 71670 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. Four linked list controllers support waveform generation to the four D/As from tables stored in either on-board memory or offboard host memory.

Data for Channel 1 and Channel 2 are interleaved for delivery to a dual channel D/A device. For this reason, they must share a common trigger/ gate, sample rate, interpolation factor, and other parameters. The same rules apply to Channel 3 and Channel 4. Parameters including length of waveform, waveform repetition, etc. can be programmed for each channel.

Up to 64 individual link entries for each D/A channel can be chained together to create complex waveforms with a minimum of programming.

 Pentek, Inc.
 One Park Way ◆ Upper Saddle River ◆ New Jersey 07458

 Tel: 201·818·5900 ◆ Fax: 201·818·5904 ◆ Email: info@pentek.com
 www.

DATA UNPACKING & FLOW CONTROL

MUX

LINKED-LIST DMA ENGINE

D/A

WAVEFORM

PLAYBACK IP MODULE 2 MEMORY CONTROL

Mem

PCIe INTERFACE

8X

PCle

Bank 3

40

FPGA

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards (Models 78xxx). It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model D	escription
---------	------------

71670	4-Channel 1.25 GHz D/A
	with Virtex-6 FPGA - XMC

Options:

-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O through P14 connector
-105	Gigabit serial FPGA I/O through P16 connector
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

* These options are always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

► PCI Express Interface

The Model 71670 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. The x8 lane interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

D/A Converters Type: TI DAC3484 Input Data Rate: 312.5 MHz max. Output Bandwidth: 250 MHz max. Output Sampling Rate: 1.25 GHz max. with interpolation Interpolation: 2x, 4x, 8x or 16x Resolution: 16 bits Front Panel Analog Signal Outputs **Ouantity:** Four D/A outputs Output Type: Transformer-coupled, front panel female SSMC connectors Full Scale Output: Programmable from -20 dBm (0.063 Vp-p) to +4 dBm (1.0 Vp-p) in 16 steps **Full Scale Output Programming:** 1.0x(G+1)/16 Vp-p, where 4-bit integer G = 0 to 15 **Clock Synthesizer** Clock Source: Selectable from on-board programmable VCXO or front panel external clock VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz and 1213 to 1417 MHz Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz

system reference, typically 10 MHz **Clock Dividers**: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the D/A clock **External Clock**

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 500 MHz sample clock or 5 or 10 MHz system reference

External Trigger Input Type: Front panel female SSMC connector Function: Programmable functions include: trigger, gate, sync and PPS

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Installs the PMC P14 connector with 20 LVDS pairs to the FPGA **Option -105:** Installs the XMC P16 connector configurable as two 4X or one 8X gigabit serial links to the FPGA

Memory: Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface PCI Express Bus: Gen. 1 or Gen 2:

x4 or x8;

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C

Relative Humidity: 0 to 95%, non-cond.

Size: Standard XMC module, 2.91 in. x 5.87 in.

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four 1.25 GHz 16-bit D/As
- Four digital upconverters
- Programmable output levels
- 250 MHz max. output bandwidth
- 2 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 78670 is a member of the Cobalt[®] family of high performance PCIe boards based on the Xilinx Virtex-6 FPGA. This 4-channel, high-speed data converter is suitable for connection to transmit HF or IF ports of a communications or radar system. Its built-in data playback features offer an ideal turnkey solution for demanding transmit applications.

It includes four D/As, four digital upconverters and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 78670 includes optional general purpose and gigabit serial connectors for application-specific I/O.

The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 78670 factory-installed functions include four D/A waveform playback IP modules, to support waveform generation through the D/A converters. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 78670 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105 connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201-818-5900
Fax: 201-818-5904
Email: info@pentek.com

www.pentek.com

Digital Upconverter and D/A Stage

Two Texas Instruments DAC3484s provide four DUC (digital upconverter) and D/A channels. Each channel accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stage.

When operating as a DUC, it interpolates and translates real or complex baseband input signals to a user selectable IF center frequency. It delivers real or quadrature (I+Q) analog outputs to a 16-bit D/A converter.

If translation is disabled, each D/A acts as an interpolating 16-bit D/A with output sampling rates up to 1.25 GHz. In both modes, the D/A provides interpolation factors of 2x, 4x, 8x and 16x. Analog output is through four front panel SSMC connectors.

Clocking and Synchronization

TEST SIGNAL GENERATOF

> MEMORY CONTROL

> > to

Mem

Bank '

An internal timing bus provides all required D/A clocking. The bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided by

> DATA UNPACKING

& FLOW CONTROL

MUX

LINKED-LIST DMA ENGINE

WAVEFORM

PLAYBACK

IP MODULE

VIRTEX-6 FPGA DATAFLOW DETAIL

Memory Bank 3 Memor

Memory Bank 1 + Bank 2 16 to D/A Ch 1 & 2

DATA INTERLEAVER

MEMORY

Mem

Bank 2

2, 4, 8, or 16 to provide lower frequency D/A clocks.

A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and trigger/gate signals. The Pentek Models 7892 or 9192 Cobalt Synchronizers can drive multiple 78670 μ Sync connectors enabling large, multichannel synchronous configurations.

Memory Resources

The 78670 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the board's DMA and waveform playback capabilities. Waveform tables can be loaded into the memories with playback managed by the linked list controllers.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

DATA UNPACKING

& FLOW CONTROL

MUX

LINKED-LIST DMA ENGINE

WAVEFORM

PLAYBACK

Gigabit Serial I/O

The Model 78670 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. The x8 lane interface includes multiple DMA controllers for efficient transfers to and from the board. >

> 16 to D/A Ch 3 & 4

> > DATA

& FLOW CONTROL

MUX

LINKED-LIST DMA ENGINE

D/A

WAVEFORM

PLAYBACK IP MODULE 4

DATA INTERLEAVER

> MEMORY CONTROL

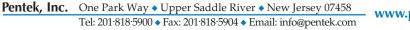
> > to

Mem

(supports user installed IP)

4X

Bank 4



The Model 78670 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. Four linked list controllers support waveform generation to the four D/As from tables stored in either on-board memory or offboard host memory.

Data for Channel 1 and Channel 2 are interleaved for delivery to a dual channel D/A device. For this reason, they must share a common trigger/ gate, sample rate, interpolation factor, and other parameters. The same rules apply to Channel 3 and Channel 4. Parameters including length of waveform, waveform repetition, etc. can be programmed for each channel.

Up to 64 individual link entries for each D/A channel can be chained together to create complex waveforms with a minimum of programming.

DATA UNPACKING & FLOW CONTROL

MUX

LINKED-LIST DMA ENGINE

D/A

WAVEFORM

PLAYBACK IP MODULE 2 MEMORY CONTROL

to

Mem

PCIe INTERFACE

^8X

PCle

Bank 3

www.pentek.com

40

FPGA

► Specifications

D/A Converters Type: TI DAC3484 Input Data Rate: 312.5 MHz max. Output Bandwidth: 250 MHz max. Output Sampling Rate: 1.25 GHz max. with interpolation Interpolation: 2x, 4x, 8x or 16x Resolution: 16 bits Front Panel Analog Signal Outputs Quantity: Four D/A outputs Output Type: Transformer-coupled, front panel female SSMC connectors Full Scale Output: Programmable from

-20 dBm (0.063 Vp-p) to +4 dBm (1.0 Vp-p)in 16 steps **Full Scale Output Programming:** $1.0 \times (C+1)/16 \text{ Vp p}$ where 4 bit integer

1.0x(G+1)/16 Vp-p, where 4-bit integer G = 0 to 15

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz and 1213 to 1417 MHz Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 500 MHz sample clock or 5 or 10 MHz system reference

External Trigger Input

Type: Front panel female SSMC connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Timing Bus: 19-pin μSync bus connector includes sync and gate/trigger inputs, CML

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O. **Option -105:** Connects two 4X gigabit

serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board

Memory: Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen 2: x4 or x8;

Environmental

Operating Temp: 0° to 50° C

- Storage Temp: –20° to 90° C
- **Relative Humidity:** 0 to 95%, non-cond. **Size:** Half length PCIe card, 4.38 in. x 7.13 in.

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
78670	4-Channel 1.25 GHz D/A
	with Virtex-6 FPGA - x8
	PCle

Options:

-002*	-2 FPGA	speed	grade

- -062 XC6VLX240T FPGA
- -064 XC6VSX315T FPGA
- -104 LVDS FPGA I/O through 68-pin ribbon cable connector
- -105 Gigabit serial FPGA I/O through two 4X top edge connectors
- -155* Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
- -165* Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
- * These options are always required

Model Description

8266 PC Development System See 8266 Datasheet for Options

Model 53670 COTS (left) and rugged version

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four 1.25 GHz 16-bit D/As
- Four digital upconverters
- Programmable output levels
- 250 MHz max. output bandwidth
- 2 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- User-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: *VITA-46, VITA-48 and VITA-65 (OpenVPX™ System Specification)*
- Ruggedized and conductioncooled versions available

General Information

Model 53670 is a member of the Cobalt[®] family of high performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. This 4-channel, high-speed data converter is suitable for connection to transmit HF or IF ports of a communications or radar system. Its built-in data playback features offer an ideal turnkey solution for demanding transmit applications.

It includes four D/As, four digital upconverters and four banks of memory. In addition to supporting PCI Express Gen. 2 over the 3U VPX backplane, the Model 53670 includes general purpose and gigabit serial connectors for application-specific I/O.

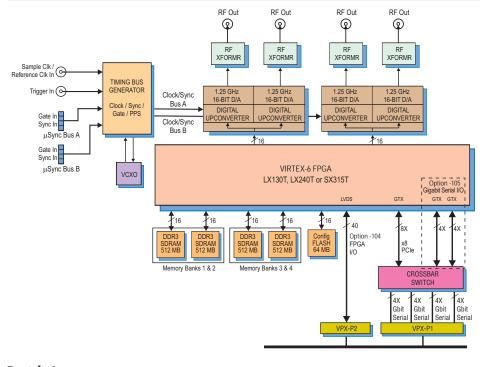
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 53670 factory-installed functions include four D/A waveform playback IP modules, to support waveform generation through the D/A converters. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions,

a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 53670 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201.818:5900
Fax: 201.818:5904
Email: info@pentek.com

Digital Upconverter and D/A Stage

Two Texas Instruments DAC3484s provide four DUC (digital upconverter) and D/A channels. Each channel accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stage.

When operating as a DUC, it interpolates and translates real or complex baseband input signals to a user selectable IF center frequency. It delivers real or quadrature (I+Q) analog outputs to a 16-bit D/A converter.

If translation is disabled, each D/A acts as an interpolating 16-bit D/A with output sampling rates up to 1.25 GHz. In both modes, the D/A provides interpolation factors of 2x, 4x, 8x and 16x. Analog output is through four front panel SSMC connectors.

Clocking and Synchronization

An internal timing bus provides all required D/A clocking. The bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided by 2, 4, 8, or 16 to provide lower frequency D/A clocks.

A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and trigger/gate signals. The Pentek Models 5392 or 9192 Cobalt Synchronizers can drive multiple 53670 μ Sync connectors enabling large, multichannel synchronous configurations.

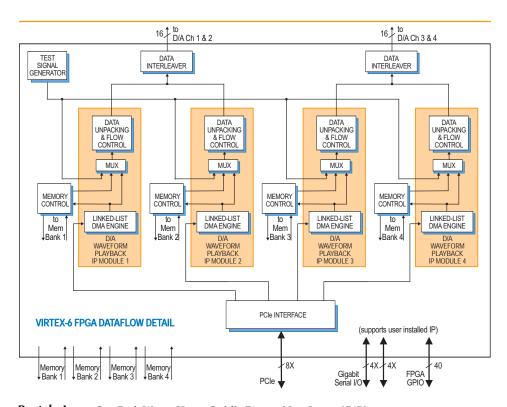
Memory Resources

The 53670 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the board's DMA and waveform playback capabilities. Waveform tables can be loaded into the memories with playback managed by the linked list controllers.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 53670 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. The x8 lane interface includes multiple DMA controllers for efficient transfers to and from the board. >



The Model 53670 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. Four linked list controllers support waveform generation to the four D/As from tables stored in either on-board memory or offboard host memory.

Data for Channel 1 and Channel 2 are interleaved for delivery to a dual channel D/A device. For this reason, they must share a common trigger/ gate, sample rate, interpolation factor, and other parameters. The same rules apply to Channel 3 and Channel 4. Parameters including length of waveform, waveform repetition, etc. can be programmed for each channel.

Up to 64 individual link entries for each D/A channel can be chained together to create complex waveforms with a minimum of programming.

NTE

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	0
Model	Description
53670	4-Channel 1.25 GHz D/A with Virtex-6 FPGA - 3U VPX
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
* These o	ntions are always required

These options are always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8267 VPX Development System. See 8267 Datasheet for Options

Fabric-Transparent Crossbar Switch

The 53670 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency. Programmable signal input equalization and output pre-emphasis settings enable optimization. Data paths can be selected as single (1X) lanes, or groups of four lanes (4X).

Specifications

D/A Converters Type: TI DAC3484 Input Data Rate: 312.5 MHz max. Output Bandwidth: 250 MHz max. Output Sampling Rate: 1.25 GHz max. with interpolation Interpolation: 2x, 4x, 8x or 16x Resolution: 16 bits Front Panel Analog Signal Outputs Quantity: Four D/A outputs Output Type: Transformer-coupled, front panel female SSMC connectors Full Scale Output: Programmable from -20 dBm (0.063 Vp-p) to +4 dBm (1.0 Vp-p) in 16 steps **Full Scale Output Programming:** 1.0x(G+1)/16 Vp-p, where 4-bit integer G = 0 to 15 Clock Synthesizer Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz and 1213 to 1417 MHz Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 500 MHz sample clock or 5 or 10 MHz system reference

External Trigger Input

Type: Front panel female SSMC connector Function: Programmable functions include: trigger, gate, sync and PPS

Timing Bus: 19-pin µSync bus connector includes, clock, reset and gate/trigger inputs and outputs, CML

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O Option -105: Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory: Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen 2: x4 or x8;

Environmental

Operating Temp: 0° to 50° C

Storage Temp: -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 53xxx and the 52xxx. For more information on a 52xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

	VPX Family Comparison	
	52xxx	53xxx
Form Factor	3U VPX	
# of XMCs	One XMC	
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs on VPX P2	
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458 www.pentek.com Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Model 52670 COTS (left) and rugged version

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four 1.25 GHz 16-bit D/As
- Four digital upconverters
- Programmable output levels
- 250 MHz max. output bandwidth
- 2 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- User-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: *VITA-46, VITA-48 and VITA-65 (OpenVPX™ System Specification)*
- Ruggedized and conductioncooled versions available

General Information

Model 52670 is a member of the Cobalt[®] family of high performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. This 4-channel, high-speed data converter is suitable for connection to transmit HF or IF ports of a communications or radar system. Its built-in data playback features offer an ideal turnkey solution for demanding transmit applications.

It includes four D/As, four digital upconverters and four banks of memory. In addition to supporting PCI Express Gen. 2 over the 3U VPX backplane, the Model 52670 includes general purpose and gigabit serial connectors for application-specific I/O.

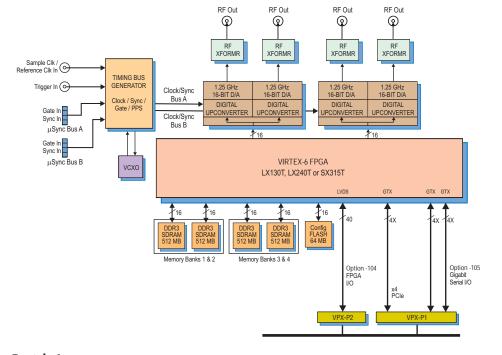
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 52670 factory-installed functions include four D/A waveform playback IP modules, to support waveform generation through the D/A converters. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions,

a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 52670 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201.818:5900
Fax: 201.818:5904
Email: info@pentek.com

www.pentek.com

Digital Upconverter and D/A Stage

Two Texas Instruments DAC3484s provide four DUC (digital upconverter) and D/A channels. Each channel accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stage.

When operating as a DUC, it interpolates and translates real or complex baseband input signals to a user selectable IF center frequency. It delivers real or quadrature (I+Q) analog outputs to a 16-bit D/A converter.

If translation is disabled, each D/A acts as an interpolating 16-bit D/A with output sampling rates up to 1.25 GHz. In both modes, the D/A provides interpolation factors of 2x, 4x, 8x and 16x. Analog output is through four front panel SSMC connectors.

Clocking and Synchronization

An internal timing bus provides all required D/A clocking. The bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided by 2, 4, 8, or 16 to provide lower frequency D/A clocks.

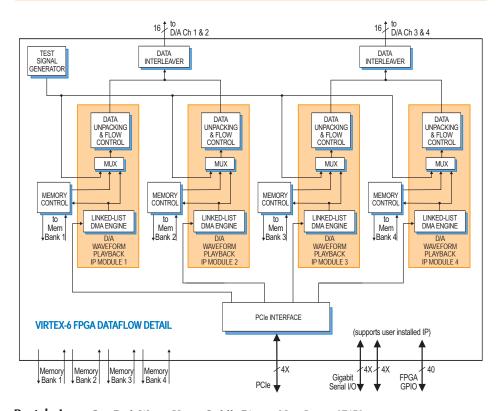
A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and trigger/gate signals. The Pentek Models 5292 or 9192 Cobalt Synchronizers can drive multiple 52670 μ Sync connectors enabling large, multichannel synchronous configurations.

Memory Resources

The 52670 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the board's DMA and waveform playback capabilities. Waveform tables can be loaded into the memories with playback managed by the linked list controllers.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface


The Model 52670 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. The x4 lane interface includes multiple DMA controllers for efficient transfers to and from the board. >

D/A Waveform Playback IP Module

The Model 52670 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. Four linked list controllers support waveform generation to the four D/As from tables stored in either on-board memory or offboard host memory.

Data for Channel 1 and Channel 2 are interleaved for delivery to a dual channel D/A device. For this reason, they must share a common trigger/ gate, sample rate, interpolation factor, and other parameters. The same rules apply to Channel 3 and Channel 4. Parameters including length of waveform, waveform repetition, etc. can be programmed for each channel.

Up to 64 individual link entries for each D/A channel can be chained together to create complex waveforms with a minimum of programming.

www.pentek.com

► Specifications

D/A Converters Type: TI DAC3484 Input Data Rate: 312.5 MHz max. Output Bandwidth: 250 MHz max. Output Sampling Rate: 1.25 GHz max.

with interpolation Interpolation: 2x, 4x, 8x or 16x Resolution: 16 bits

Front Panel Analog Signal Outputs Quantity: Four D/A outputs Output Type: Transformer-coupled, front panel female SSMC connectors Full Scale Output: Programmable from -20 dBm (0.063 Vp-p) to +4 dBm (1.0 Vp-p)

in 16 steps **Full Scale Output Programming:** 1.0x(G+1)/16 Vp-p, where 4-bit integer G = 0 to 15

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz and 1213 to 1417 MHz Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 500 MHz sample clock or 5 or 10 MHz system reference

External Trigger Input

Type: Front panel female SSMC connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Timing Bus: 19-pin µSync bus connector includes, clock, reset and gate/trigger inputs and outputs, CML

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory: Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen 2: x4 Environmental

Operating Temp: 0° to 50° C **Storage Temp:** –20° to 90° C **Relative Humidity:** 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

	VPX Family	Comparison
	52xxx	53xxx
Form Factor	3U V	VPX
# of XMCs	One XMC	
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs on VPX P2	
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	0
Model	Description
52670	4-Channel 1.25 GHz D/A with Virtex-6 FPGA - 3U VPX
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165*	Two 512 MB DDR3 SDRAM Memory Banks

(Banks 3 and 4) * These options are always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System.
	See 8267 Datasheet for
	Options

Models 57670 & 58670

4- or 8-Channel 1.25 GHz D/A with DUC and Virtex-6 FPGA - 6U OpenVPX

Model 58670

Features

- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four or eight 1.25 GHz 16-bit D/As
- Four or eight digital upconverters
- Programmable output levels
- 250 MHz max. output bandwidth
- 2 or 4 GB of DDR3 SDRAM
- PCI Express (Gen. 1 & 2) interface up to x8
- Sample clock synchronization to an external system reference
- Dual-or Quad µSync clock/ sync bus for multiboard synchronization
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- Ruggedized and conductioncooled versions available

General Information

Models 57670 and 58670 are members of the Cobalt[®] family of high-performance 6U OpenVPX boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71670 XMC modules mounted on a VPX carrier board.

Model 57670 is a 6U board with one Model 71670 module while the Model 58670 is a 6U board with two XMC modules rather than one.

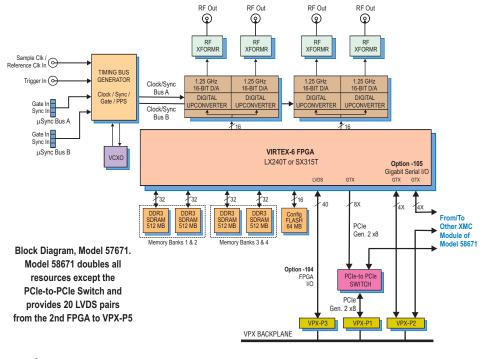
These models include four or eight D/As, four or eight DUCs, and four or eight banks of memory.

The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions in these models include four or eightD/A waveform playback IP modules, to support waveform generation through the D/A converters. IP modules for DDR3 SDRAM memories, controllers for all data clocking and synchronization functions, test signal generators, and a PCIe interface complete the factoryinstalled functions and enable these models to operate as complete turnkey solutions, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57670; P3 and P5, Model 58670.

Option -105 supports serial protocalls by providing a 4X gigabit link between the FPGA and VPX P2, Model 57670; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58670. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

4- or 8-Channel 1.25 GHz D/A with DUC and Virtex-6 FPGA - 6U OpenVPX

Digital Upconverter and D/A Stage

Two or four Texas Instruments DAC3484s provide four or eight DUC (digital upconverter) and D/A channels. Each channel accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stage.

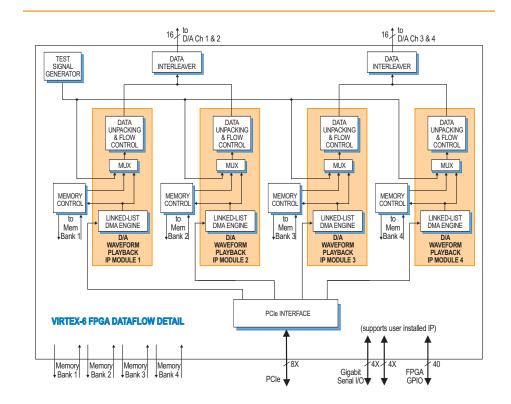
When operating as a DUC, it interpolates and translates real or complex baseband input signals to a user selectable IF center frequency. It delivers real or quadrature (I+Q) analog outputs to a 16-bit D/A converter.

If translation is disabled, each D/A acts as an interpolating 16-bit D/A with output sampling rates up to 1.25 GHz. In both modes, the D/A provides interpolation factors of 2x, 4x, 8x and 16x. Analog output is through four or eight front panel SSMC connectors.

Clocking and Synchronization

An internal timing bus provides all required D/A clocking. The bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided by 2, 4, 8, or 16 to provide lower frequency D/A clocks.

A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and trigger/gate signals. The Pentek Model 9192 Cobalt Synchronizer can drive multiple μ Sync connectors enabling large, multichannel synchronous configurations.


Memory Resources

The architecture of these models supports four or eight independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the board's DMA and waveform playback capabilities. Waveform tables can be loaded into the memories with playback managed by the linked-list controllers.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

These models include an industrystandard interface fully compliant with PCI Express Gen. 1 and 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board. >

D/A Waveform Playback IP Module

The factory-installed functions in these models include one or two sophisticated D/A Waveform Playback IP modules. Four or eight linked list controllers support waveform generation to the four or eight D/As from tables stored in either on-board memory or offboard host memory.

Data for Channel 1 and Channel 2 are interleaved for delivery to a dual channel D/A device. For this reason, they must share a common trigger/ gate, sample rate, interpolation factor, and other parameters. The same rules apply to Channel 3 and Channel 4, as well as to the other four channels of Model 58670.

Parameters including length of waveform, waveform repetition, etc. can be programmed for each channel.

Up to 64 or 128 individual link entries for each D/A channel can be chained together to create complex waveforms with a minimum of programming.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

Models 57670 & 58670

4- or 8-Channel 1.25 GHz D/A with DUC and Virtex-6 FPGA - 6U OpenVPX

Model 8264

The Model 8264 is a fullyintegrated development system for Pentek Cobalt and Onyx 6U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
57670	4-Channel 1.25 GHz D/A with Virtex-6 FPGA - 6U VPX
58670	8-Channel 1.25 GHz D/A with two Virtex-6 FPGAs - 6U VPX
Options	:
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS I/O between the FPGA and P3 connector, Model 57670; P3 and P5 connectors, Model 58670
-105	Gigabit link between the FPGA and P2 connector, Model 57670; gigabit links from each FPGA to P2 connector, Model 58670
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
* These	options are always required
	rt Pentek for availability

of rugged and conduction-cooled versions

Model Description 8264 VPX Development System. See 8264 Datasheet for Options

► Specifications

- Model 57670: 4-Channel DUC, 4-channel D/A
- Model 58670: 8-Channel DUC, 8-channel D/A
- D/A Converters (4 or8) Type: TI DAC3484 Input Data Rate: 312.5 MHz max. Output Bandwidth: 250 MHz max. Output Sampling Rate: 1.25 GHz max. with interpolation Interpolation: 2x, 4x, 8x or 16x
- Resolution: 16 bits Front Panel Analog Signal Outputs (4 or 8) Output Type: Transformer-coupled, front panel female SSMC connectors Full Scale Output: Programmable from -20 dBm (0.063 Vp-p) to +4 dBm (1.0 Vp-p)
 - in 16 steps **Full Scale Output Programming:** 1.0x(G+1)/16 Vp-p, where 4-bit integer G = 0 to 15

Clock Synthesizers (1 or 2) Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz and 1213 to 1417 MHz Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the D/A clock

- External Clocks (1 or 2) Type: Front panel female SSMC connector,
 - sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 500 MHz sample clock or 5 or 10 MHz system reference
- External Trigger Inputs (1 or 2) Type: Front panel female SSMC connector Function: Programmable functions include: trigger, gate, sync and PPS
- **Timing Bus (1 or 2):** 19-pin μSync bus connector includes, clock, reset and gate/trigger inputs and outputs, CML
- Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2
- Custom I/O

Option -104: Provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57670; P3 and P5, Model 58670

Option -105: Supports serial protocols by providing a 4X gigabit link between the FPGA and VPX P2, Model 57670; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58670

Memory Banks (1 or 2)

Four or eight 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or 2: x4 or x8 Environmental: Level L1 & L2 air-cooled;

Level L3 ruggedized, conduction-cooled **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

Model 74670 Model 73670

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four or eight 1.25 GHz 16-bit D/As
- Four or eight digital upconverters
- Programmable output levels
- 250 MHz max. output bandwidth
- 2 or 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-or Quad µSync clock/ sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

PENTEK

General Information

Models 72670, 73670 and 74670 are members of the Cobalt[®] family of high performance CompactPCI boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71670 XMC modules mounted on a cPCI carrier board.

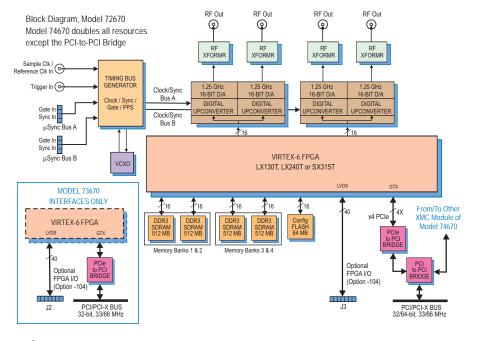
Model 72670 is a 6U cPCI board while the Model 73670 is a 3U cPCI board; both are equipped with one Model 71670 XMC. Model 74670 is a 6U cPCI board with two XMC modules rather than one.

These models include four or eight D/As, four or eight DUCs, and four or eight banks of memory.

The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions in these models include four or eightD/A waveform playback IP modules, to support waveform generation through the D/A converters. IP modules for DDR3 SDRAM memories, controllers for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factoryinstalled functions and enable these models to operate as complete turnkey solutions, without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73670; J3 connector, Model 72670; J3 and J5 connectors, Model 74670. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Digital Upconverter and D/A Stage

Two or four Texas Instruments DAC3484s provide four or eight DUC (digital upconverter) and D/A channels. Each channel accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stage.

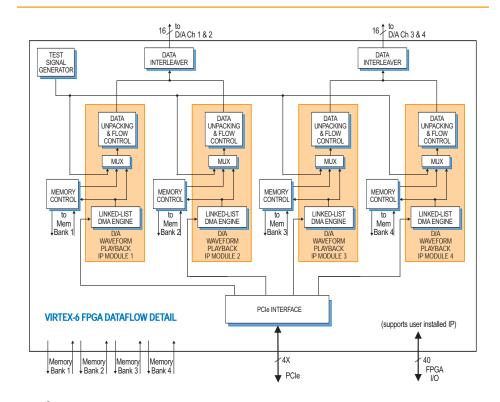
When operating as a DUC, it interpolates and translates real or complex baseband input signals to a user selectable IF center frequency. It delivers real or quadrature (I+Q) analog outputs to a 16-bit D/A converter.

If translation is disabled, each D/A acts as an interpolating 16-bit D/A with output sampling rates up to 1.25 GHz. In both modes, the D/A provides interpolation factors of 2x, 4x, 8x and 16x. Analog output is through four front panel SSMC connectors.

Clocking and Synchronization

An internal timing bus provides all required D/A clocking. The bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided by 2, 4, 8, or 16 to provide lower frequency D/A clocks.

A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and trigger/gate signals. The Pentek Models 7292, 7392 and 7492 or the 9192 Cobalt Synchronizers can drive multiple μ Sync connectors enabling large, multichannel synchronous configurations.


Memory Resources

The architecture of these models supports four or eight independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the board's DMA and waveform playback capabilities. Waveform tables can be loaded into the memories with playback managed by the linked list controllers.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI-X Interface

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported. Model 73670: 32 bits only. >

D/A Waveform Playback IP Module

The factory-installed functions in these models include one or two sophisticated D/A Waveform Playback IP modules. Four or eight linked list controllers support waveform generation to the four or eight D/As from tables stored in either on-board memory or offboard host memory.

Data for Channel 1 and Channel 2 are interleaved for delivery to a dual channel D/A device. For this reason, they must share a common trigger/ gate, sample rate, interpolation factor, and other parameters. The same rules apply to Channel 3 and Channel 4, as well as to the other four channels of Model 74670.

Parameters including length of waveform, waveform repetition, etc. can be programmed for each channel.

Up to 64 or 128 individual link entries for each D/A channel can be chained together to create complex waveforms with a minimum of programming.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

► Specifications

- Models 72670 and 73670: 4-Channel DUC, 4-channel D/A Model 74670: 8-Channel DUC, 4-channel D/A
- D/A Converters (4 or8)

Type: TI DAC3484 Input Data Rate: 312.5 MHz max. Output Bandwidth: 250 MHz max. Output Sampling Rate: 1.25 GHz max. with interpolation Interpolation: 2x, 4x, 8x or 16x Resolution: 16 bits

Front Panel Analog Signal Outputs (4 or 8) Output Type: Transformer-coupled, front panel female SSMC connectors Full Scale Output: Programmable from -20 dBm (0.063 Vp-p) to +4 dBm (1.0 Vp-p) in 16 steps

Full Scale Output Programming: 1.0x(G+1)/16 Vp-p, where 4-bit integer

G = 0 to 15

Clock Synthesizers (1 or 2) Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz and 1213 to 1417 MHz Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the D/A clock

External Clocks (1 or 2)

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 500 MHz sample clock or 5 or 10 MHz system reference

- External Trigger Inputs (1 or 2) Type: Front panel female SSMC connector Function: Programmable functions include: trigger, gate, sync and PPS
- Timing Bus (1 or 2): 19-pin µSync bus connector includes, clock, reset and gate/trigger inputs and outputs, CML
- Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73670; J3 connector, Model 72670; J3 and J5 connectors, Model 74670

Memory Banks (1 or 2)

Four or eight 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-X Interface

PCI-X Bus: 32 or 64 bits at 33 or 66 MHz Model 73670: 32 bits only

Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Standard 6U or 3U cPCI board

Ordering Information

Model	Description
72670	4-Channel 1.25 GHz D/A with Virtex-6 FPGA - 6U cPCI
73670	4-Channel 1.25 GHz D/A with Virtex-6 FPGA - 3U cPCI
74670	8-Channel 1.25 GHz D/A with Virtex-6 FPGA - 6U cPCI
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS I/O between the FPGA and J2 connector, Model 73670; J3 connector, Model 72670; J3 and J5 connectors, Model 74670
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

* These options are always required

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four 1.25 GHz 16-bit D/As
- Four digital upconverters
- Programmable output levels
- 250 MHz max. output bandwidth
- 2 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- AMC.1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)
- Optional front panel LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 56670 is a member of the Cobalt[®] family of high-performance AMC modules based on the Xilinx Virtex-6 FPGA. This 4-channel, high-speed data converter is suitable for connection to transmit HF or IF ports of a communications or radar system. Its built-in data playback features offer an ideal turnkey solution for demanding transmit applications.

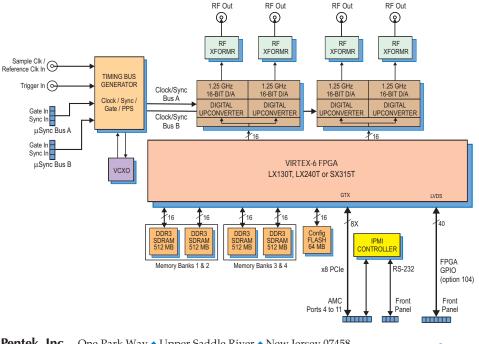
It includes four D/As, four digital upconverters and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 56670 includes a front panel general-purpose connector for application-specific I/O.

The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 56670 factory-installed functions include four D/A waveform playback IP modules, to support waveform generation through the D/A converters. IP modules for DDR3

SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 56670 to operate as a complete turnkey solution, without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs a front panel connector with 20 pairs of LVDS connections to the FPGA for custom I/O. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201.818:5900
Fax: 201.818:5904
Email: info@pentek.com

Digital Upconverter and D/A Stage

Two Texas Instruments DAC3484s provide four DUC (digital upconverter) and D/A channels. Each channel accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stage.

When operating as a DUC, it interpolates and translates real or complex baseband input signals to a user selectable IF center frequency. It delivers real or quadrature (I+Q) analog outputs to a 16-bit D/A converter.

If translation is disabled, each D/A acts as an interpolating 16-bit D/A with output sampling rates up to 1.25 GHz. In both modes, the D/A provides interpolation factors of 2x, 4x, 8x and 16x. Analog output is through four front panel SSMC connectors.

Clocking and Synchronization

An internal timing bus provides all required D/A clocking. The bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided by 2, 4, 8, or 16 to provide lower frequency D/A clocks.

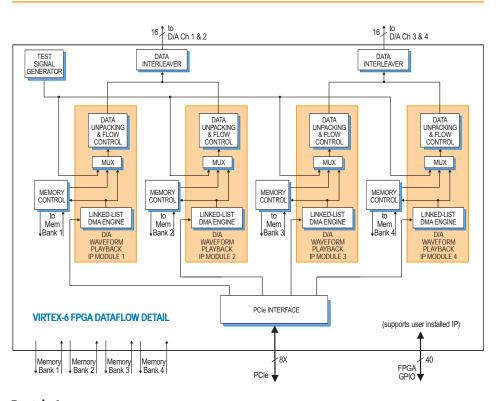
A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and trigger/gate signals. The Pentek Models 5692 or 9192 Cobalt Synchronizers can drive multiple 56670 μ Sync connectors enabling large, multichannel synchronous configurations.

Memory Resources

The 56670 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the module's DMA and waveform playback capabilities. Waveform tables can be loaded into the memories with playback managed by the linked list controllers.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

AMC Interface


The Model 56670 complies with the AMC.1 specification by providing an x8 PCIe connection to AdvancedTCA carriers or μ TCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller). >

The Model 56670 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. Four linked list controllers support waveform generation to the four D/As from tables stored in either on-board memory or offboard host memory.

Data for Channel 1 and Channel 2 are interleaved for delivery to a dual channel D/A device. For this reason, they must share a common trigger/ gate, sample rate, interpolation factor, and other parameters. The same rules apply to Channel 3 and Channel 4. Parameters including length of waveform, waveform repetition, etc. can be programmed for each channel.

Up to 64 individual link entries for each D/A channel can be chained together to create complex waveforms with a minimum of programming.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

► PCI Express Interface

The Model 56670 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. The x8 lane interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

D/A Converters Type: TI DAC3484 Input Data Rate: 312.5 MHz max. Output Bandwidth: 250 MHz max. Output Sampling Rate: 1.25 GHz max. with interpolation Interpolation: 2x, 4x, 8x or 16x Resolution: 16 bits Front Panel Analog Signal Outputs Quantity: Four D/A outputs Output Type: Transformer-coupled, front panel female SSMC connectors Full Scale Output: Programmable from -20 dBm (0.063 Vp-p) to +4 dBm (1.0 Vp-p) in 16 steps **Full Scale Output Programming:** 1.0x(G+1)/16 Vp-p, where 4-bit integer G = 0 to 15 **Clock Synthesizer** Clock Source: Selectable from on-board programmable VCXO or front panel external clock VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz and 1213 to 1417 MHz Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz

system reference, typically 10 MHz **Clock Dividers**: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 500 MHz sample clock or 5 or 10 MHz system reference External Trigger Input

Type: Front panel female SSMC connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Timing Bus: 19-pin µSync bus connector includes, clock, reset and gate/trigger inputs and outputs, CML

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6

XC6VLX240T-2 or XC6VSX315T-2 Custom I/O

Option -104: Installs a front panel connector with 20 LVDS pairs to the FPGA

Memory: Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface PCI Express Bus: Gen. 1 or Gen 2: x4 or x8;

AMC Interface

Type: AMC.1

Module Management: IPMI Version 2.0 Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. Size: Single-width, full-height AMC module, 2.89 in. x 7.11 in.

Ordering Information

Model	Description
56670	4-Channel 1.25 GHz D/A with Virtex-6 FPGA - AMC
Options:	
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O through front panel connector
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
* Those of	ationa are alwaya required

* These options are always required

Contact Pentek for availability of rugged and conduction-cooled versions

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

Features

- Accepts RF signals from 925 MHz to 2175 MHz
- Programmable LNA boosts LNB (low-noise block) antenna signal levels with up to 60 dB gain
- Programmable analog downconverter provides
 I + Q baseband signals with bandwidths ranging from
 4 to 40 MHz
- Two 200 MHz 16-bit A/Ds digitize the I + Q signals synchronously
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- 2 GB of DDR3 SDRAM or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1 & 2) interface, up to x8
- Clock/sync bus for multimodule synchronization
- VITA 42.0 XMC compatible with switched fabric interfaces
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 71690 is a member of the Cobalt[®] family of high performance XMC modules based on the Xilinx Virtex-6 FPGA. A 2-Channel high-speed data converter, it is suitable for connection directly to the RF port of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes an L-Band RF tuner, two A/Ds and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 71690 includes general purpose and gigabit serial connectors for application-specific I/O.

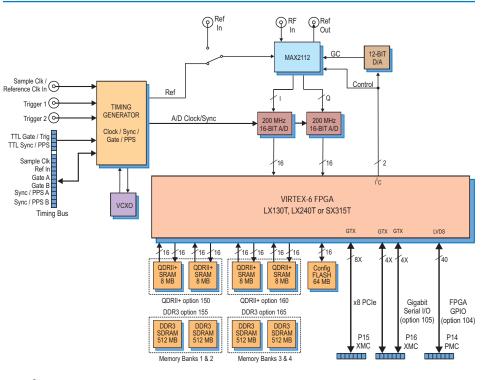
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 71690 factory-installed functions include two A/D acquisition IP modules.

IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 71690 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs the P14 PMC connector with 20 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with one 8X or two 4X gigabit links to the FPGA to support serial protocols.

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201·818·5900 & Fax: 201·818·5904 & Email: info@pentek.com

► **RF Tuner Stage**

A front panel SSMC connector accepts L-Band signals between 925 MHz and 2175 MHz from an antenna LNB (low noise block). A Maxim MAX2112 tuner directly converts these L-Band signals to baseband using a broadband I/Q downconverter.

The device includes an RF variable-gain LNA (low noise amplifier), a PLL (phase-locked loop) synthesized local oscillator, quadrature (I + Q) downconverting mixers, baseband lowpass filters with programmable cutoff frequency, and variable-gain baseband amplifiers.

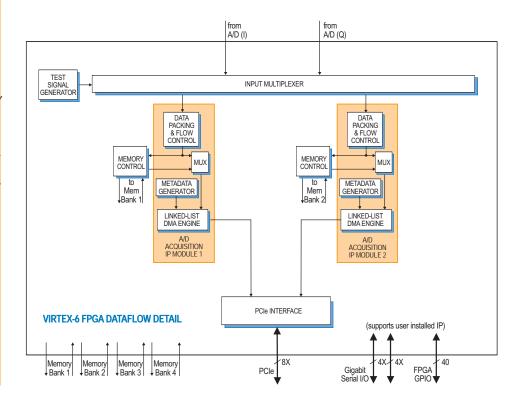
The fractional-N PLL synthesizer locks its VCO to the timing generator output, or to an external reference input between 12 and 30 MHz. Together, the baseband amplifiers and the RF LNA offer a programmable linear gain range of 60 dB.

An integrated lowpass filter with variable bandwidth provides bandwidths ranging from 4 to 40 MHz, programmable with 8 bits of resolution.

A/D Converter Stage

The analog baseband I and Q analog tuner outputs are then applied to two Texas Instruments ADS5485 200 MHz, 16-bit A/D converters. The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

A/D Clocking and Synchronization


An internal timing generator provides all timing, gating, triggering and synchronization functions required by the A/D converters. It also serves as an optional source for the L-Band tuner reference.

The front panel SSMC clock input can be used directly as the A/D sample clock. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (voltage-controlled crystal oscillator). In this mode, the front panel SSMC clock input connector accepts a 10 MHz reference signal for synchronizing the VCXO using a PLL.

The timing generator uses a front panel LVPECL 26-pin clock/sync connector for one clock, two sync, and two gate/trigger signals. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate/ trigger signals within the module. In the master mode, the LVPECL bus drives output timing signals to synchronize multiple slave modules, supporting synchronous sampling and sync functions across all connected modules.

Memory Resources

The 71690 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, all DDR3 SDRAM, or as combination of two banks of each type of memory.

A/D Acquisition IP Modules

The 71690 features two A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from either of the two A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201-818-5900 Fax: 201-818-5904 Email: info@pentek.com

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards (Models 78xxx). It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	0
Model	Description
71690	L-Band RF Tuner with 2-Channel 200 MHz A/D
	and Virtex-6 FPGA - XMC
Options:	
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O through
	P14 connector
-105	Gigabit serial FPGA I/O
	through P16 connector
-150	Two 8 MB QDRII+ SRAM
	Memory Banks (Banks 1
	and 2)
-160	Two 8 MB QDRII+ SRAM
	Memory Banks
	(Banks 3 and 4)
-155	Two 512 MB DDR3
	SDRAM Memory Banks
	(Banks 1 and 2)
-165	Two 512 MB DDR3
	SDRAM Memory Banks
	(Banks 3 and 4)

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

► Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

The factory-installed A/D acquisition modules use memory banks 1 & 2. Banks 3 & 4 can be optionally installed to support custom user-installed IP within the FPGA.

XMC Interface

The Model 71690 complies with the VITA 42.0 XMC specification. Two connectors each provide dual 4X links or a single 8X link with up to a 6 GHz bit clock. With dual XMC connectors, the 71690 supports x8 PCIe on the first XMC connector leaving the second connector free to support user-installed transfer protocols specific to the target application.

PCI Express Interface

The Model 71690 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

Front Panel Analog Signal Input **Connector:** Front panel female SSMC Impedance: 50 ohms **L-Band Tuner** Type: Maxim MAX2112 Input Frequency Range: 925 MHz to 2175 MHz Monolithic VCO Phase Noise: -97 dBc/Hz at 10 kHz Fractional-N PLL Synthesizer: $freq_{VCO} = (N.F) \times freq_{REF}$ where integer N = 19 to 251 and fractional F is a 20-bit binary value **PLL Reference (**freq_{REF}): Front panel SSMC connector or on-board 27 MHz crystal (Option -100), 12 to 30 MHz LNA Gain: 0 to 65 dB, controlled by a programmable 12-bit D/A converter* Baseband Amplifier Gain: 0 to 15 dB, in 1 dB steps* *Usable Full-Scale Input Range: -50 dBm to +10 dBm

Baseband Low Pass Filter: Cutoff frequency programmable from 4 to 40 MHz with 8-bit resolution

A/D Converters

Type: Texas Instruments ADS5485 **Sampling Rate:** 10 MHz to 200 MHz **Resolution:** 16 bits

Sample Clock Sources: On-board timing generator/synthesizer

A/D Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16, for the A/D clock

- Timing Generator External Clock Input Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 200 MHz (up to 800 MHz when Timing Generator divider is enabled) or PLL system reference
- Timing Generator Bus: 26-pin front panel connector LVPECL bus includes, clock/ sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/ PPS inputs

External Trigger Input

Quantity: 2 Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

- Field Programmable Gate Array
 - Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T, or XC6VSX315T

Custom I/O

Option -104: Installs the PMC P14 connector with 20 LVDS pairs to the FPGA **Option -105:** Installs the XMC P16 connector configurable as one 8X or two 4X gigabit serial links to the FPGA

Memory

Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 x4 or x8; Gen. 2 x4

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Standard XMC module, 2.91 in. x 5.87 in.

Features

- Accepts RF signals from 925 MHz to 2175 MHz
- Programmable LNA boosts LNB (low-noise block) antenna signal levels with up to 60 dB gain
- Programmable analog downconverter provides
 I + Q baseband signals with bandwidths ranging from
 4 to 40 MHz
- Two 200 MHz 16-bit A/Ds
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- 2 GB of DDR3 SDRAM or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1 & 2) interface, up to x8
- Clock/sync bus for multiboard synchronization
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 78690 is a member of the Cobalt[®] family of high performance PCIe boards based on the Xilinx Virtex-6 FPGA. A 2-Channel high-speed data converter, it is suitable for connection directly to the RF port of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution.

It includes an L-Band RF tuner, two A/Ds and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 78690 includes optional general-purpose and gigabit serial connectors for application-specific I/O protocols.

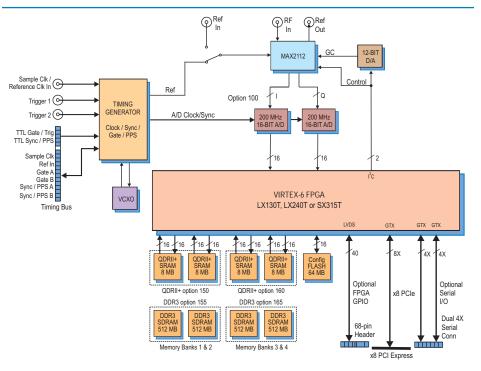
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 78690 factory-installed functions include two A/D acquisition IP modules.

IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 78690 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105 connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201-818-5900
Fax: 201-818-5904
Email: info@pentek.com

► **RF Tuner Stage**

A front panel SSMC connector accepts L-Band signals between 925 MHz and 2175 MHz from an antenna LNB (low noise block). A Maxim MAX2112 tuner directly converts these L-Band signals to baseband using a broadband I/Q downconverter.

The device includes an RF variable-gain LNA (low noise amplifier), a PLL (phase-locked loop) synthesized local oscillator, quadrature (I + Q) downconverting mixers, baseband lowpass filters with programmable cutoff frequency, and variable-gain baseband amplifiers.

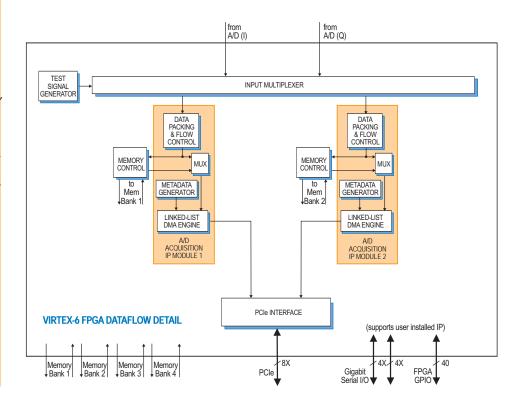
The fractional-N PLL synthesizer locks its VCO to the timing generator output, or to an external reference input between 12 and 30 MHz. Together, the baseband amplifiers and the RF LNA offer a programmable linear gain range of 60 dB.

An integrated lowpass filter with variable bandwidth provides bandwidths ranging from 4 to 40 MHz, programmable with 8 bits of resolution.

A/D Converter Stage

The analog baseband I and Q analog tuner outputs are then applied to two Texas Instruments ADS5485 200 MHz, 16-bit A/D converters. The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other board resources.

A/D Clocking and Synchronization


An internal timing generator provides all timing, gating, triggering and synchronization functions required by the A/D converters. It also serves as an optional source for the L-Band tuner reference.

The front panel SSMC clock input can be used directly as the A/D sample clock. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (voltage-controlled crystal oscillator). In this mode, the front panel SSMC clock input connector accepts a 10 MHz reference signal for synchronizing the VCXO using a PLL.

The timing generator uses a front panel LVPECL 26-pin clock/sync connector for one clock, two sync, and two gate/trigger signals. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate/ trigger signals within the board. In the master mode, the LVPECL bus drives output timing signals to synchronize multiple slave boards, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources

The 78690 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, all DDR3 SDRAM, or as combination of two banks of each type of memory.

A/D Acquisition IP Modules

The 78690 features two A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from either of the two A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201-818-5900
Fax: 201-818-5904
Email: info@pentek.com

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
78690	L-Band RF Tuner with 2-Channel 200 MHz A/D and Virtex-6 FPGA - PCIe
Options:	
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O through 68-pin ribbon cable connector
-105	Gigabit serial FPGA I/O through two 4X top edge connectors
-150	Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)
-160	Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4)
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

Model Description

8266 PC Development System See 8266 Datasheet for Options ► Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

The factory-installed A/D Acquisition Modules use memory banks 1 & 2. Banks 3 & 4 can be optionally installed to support custom user-installed IP within the FPGA.

PCI Express Interface

The Model 78690 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Specifications

Front Panel Analog Signal Input **Connector:** Front panel female SSMC Impedance: 50 ohms L-Band Tuner Type: Maxim MAX2112 Input Frequency Range: 925 MHz to 2175 MHz Monolithic VCO Phase Noise: -97 dBc/Hz at 10 kHz Fractional-N PLL Synthesizer: $freq_{VCO} = (N.F) \times freq_{REF}$ where integer N = 19 to 251 and fractional F is a 20-bit binary value **PLL Reference (**freq_{REF}): Front panel SSMC connector or on-board 27 MHz crystal (Option -100), 12 to 30 MHz LNA Gain: 0 to 65 dB, controlled by a programmable 12-bit D/A converter* **Baseband Amplifier Gain:** 0 to 15 dB, in 1 dB steps* *Usable Full-Scale Input Range: -50 dBm to +10 dBm Baseband Low Pass Filter: Cutoff frequency programmable from 4 to 40 MHz with 8-bit resolution A/D Converters Type: Texas Instruments ADS5485

Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits

Sample Clock Sources: On-board timing generator/synthesizer

A/D Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8, or 16, for the A/D clock

- Timing Generator External Clock Input Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 200 MHz (up to 800 MHz when Timing Generator divider is enabled) or PLL system reference
- Timing Generator Bus: 26-pin front panel connector LVPECL bus includes, clock/ sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/ PPS inputs
- External Trigger Input Ouantity: 2

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T or XC6VSX315T

Custom I/O

Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O. **Option -105:** Connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board

Memory

Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR **Option 155 or 165:** Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 x4 or x8; Gen. 2 x4

Environmental

Operating Temp: 0° to 50° C

Storage Temp: -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Half-length PCIe card, 4.38 in. x 7.13 in.

Model 53690

Model 53690 COTS (left) and rugged version

Features

- Accepts RF signals from 925 MHz to 2175 MHz
- Programmable LNA boosts LNB antenna signal levels with up to 60 dB gain
- Programmable analog downconverter provides
 I + Q baseband signals with bandwidths ranging from
 4 to 40 MHz
- Two 200 MHz 16-bit A/Ds
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- 2 GB of DDR3 SDRAM or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- Clock/sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 53690 is a member of the Cobalt[®] family of high performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. A 2-Channel high-speed data converter, it is suitable for connection directly to the RF port of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

The Model 53690 includes an L-Band RF tuner, two A/Ds and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

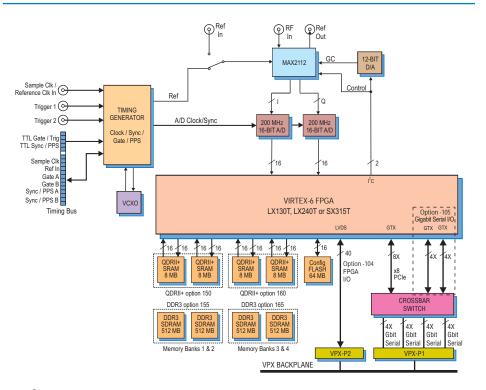
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 53690 factory-installed functions include two A/D acquisition IP modules.

IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 53690 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides dual 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201.818:5900
Fax: 201.818:5904
Email: info@pentek.com

► **RF Tuner Stage**

A front panel SSMC connector accepts L-Band signals between 925 MHz and 2175 MHz from an antenna LNB (low noise block). A Maxim MAX2112 tuner directly converts these L-Band signals to baseband using a broadband I/Q downconverter.

The device includes an RF variable-gain LNA (low noise amplifier), a PLL (phase-locked loop) synthesized local oscillator, quadrature (I + Q) downconverting mixers, baseband lowpass filters with programmable cutoff frequency, and variable-gain baseband amplifiers.

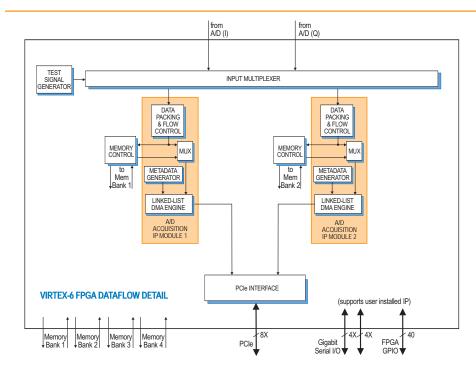
The fractional-N PLL synthesizer locks its VCO to the timing generator output, or to an external reference input between 12 and 30 MHz. Together, the baseband amplifiers and the RF LNA offer a programmable linear gain range of 60 dB.

An integrated lowpass filter with variable bandwidth provides bandwidths ranging from 4 to 40 MHz, programmable with 8 bits of resolution.

A/D Converter Stage

The analog baseband I and Q analog tuner outputs are then applied to two Texas Instruments ADS5485 200 MHz, 16-bit A/D converters. The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other board resources.

A/D Clocking and Synchronization


An internal timing generator provides all timing, gating, triggering and synchronization functions required by the A/D converters. It also serves as an optional source for the L-Band tuner reference.

The front panel SSMC clock input can be used directly as the A/D sample clock. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (voltage-controlled crystal oscillator). In this mode, the front panel SSMC clock input connector accepts a 10 MHz reference signal for synchronizing the VCXO using a PLL.

The timing generator uses a front panel LVPECL 26-pin clock/sync connector for one clock, two sync, and two gate/trigger signals. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate/ trigger signals within the board. In the master mode, the LVPECL bus drives output timing signals to synchronize multiple slave boards, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources

The 53690 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, all DDR3 SDRAM, or as combination of two banks of each type of memory. Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. ►

A/D Acquisition IP Modules

The 53690 features two A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from either of the two A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

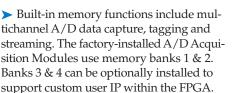
Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

PCI Express Interface

The Model 53690 includes an industry standard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.



Ordering Information

Model	Description
53690	L-Band RF Tuner with 2-Channel 200 MHz A/D and Virtex-6 FPGA - 3U VPX
Options:	
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1
-150	Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)
-160	Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4)
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System. See 8267 Datasheet for Options

Fabric-Transparent Crossbar Switch

The 53690 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency.

Programmable signal input equalization and output pre-emphasis settings enable optimization. Data paths can be selected as single (1X) lanes, or groups of four lanes (4X).

Specifications

Front Panel Analog Signal Input **Connector:** Front panel female SSMC Impedance: 50 ohms **L-Band Tuner** Type: Maxim MAX2112 Input Frequency Range: 925 MHz to 2175 MHz Monolithic VCO Phase Noise: -97 dBc/Hz at 10 kHz Fractional-N PLL Synthesizer: $freq_{VCO} = (N.F) x freq_{REF}$ where integer N = 19 to 251 and fractional F is a 20-bit binary value **PLL Reference (**freq_{REF}): Front panel SSMC connector or on-board 27 MHz crystal (Option -100), 12 to 30 MHz LNA Gain: 0 to 65 dB, controlled by a programmable 12-bit D/A converter* Baseband Amplifier Gain: 0 to 15 dB, in 1 dB steps* *Usable Full-Scale Input Range: -50 dBm to +10 dBm Baseband Low Pass Filter: Cutoff frequency programmable from 4 to 40 MHz with 8-bit resolution A/D Converters **Type:** Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz

Sampling Rate: 10 MHz to 2 Resolution: 16 bits

Sample Clock Sources: On-board timing generator/synthesizer

A/D Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16, for the A/D clock

- Timing Generator External Clock Input Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 200 MHz (up to 800 MHz when Timing Generator divider is enabled) or PLL system reference
- Timing Generator Bus: 26-pin front panel connector LVPECL bus includes, clock/ sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/ PPS inputs

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T or XC6VSX315T

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector for serial protocols

Memory

Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR **Option 155 or 165:** Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 x4 or x8; Gen. 2 x4 Environmental

Operating Temp: 0° to 50° C

Storage Temp: -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 53xxx and the 52xxx. For more information on a 52xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

	VPX Family	Comparison
	52xxx	53xxx
Form Factor	3U V	VPX
# of XMCs	One	XMC
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs o	n VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Pentek, Inc. One Park Way ♦ Upper Saddle River ♦ New Jersey 07458

Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

Model 52690 COTS (left) and rugged version

Features

- Accepts RF signals from 925 MHz to 2175 MHz
- Programmable LNA boosts LNB antenna signal levels with up to 60 dB gain
- Programmable analog downconverter provides
 I + Q baseband signals with bandwidths ranging from
 4 to 40 MHz
- Two 200 MHz 16-bit A/Ds
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- 2 GB of DDR3 SDRAM or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- Clock/sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: *VITA-46, VITA-48 and VITA-65 (OpenVPX™ System Specification)*
- Ruggedized and conductioncooled versions available

General Information

Model 52690 is a member of the Cobalt[®] family of high performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. A 2-Channel high-speed data converter, it is suitable for connection directly to the RF port of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

The Model 52690 includes an L-Band RF tuner, two A/Ds and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

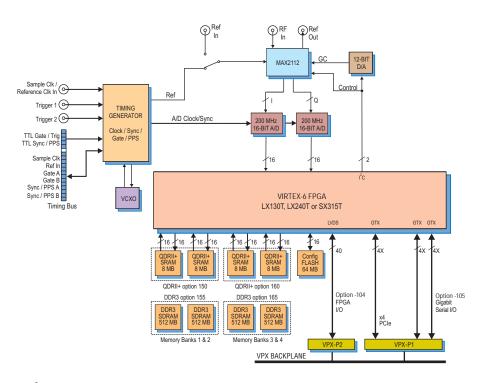
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 52690 factory-installed functions include two A/D acquisition IP modules.

IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 52690 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides dual 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201.818.5900
Fax: 201.818.5904
Email: info@pentek.com

► **RF Tuner Stage**

A front panel SSMC connector accepts L-Band signals between 925 MHz and 2175 MHz from an antenna LNB (low noise block). A Maxim MAX2112 tuner directly converts these L-Band signals to baseband using a broadband I/Q downconverter.

The device includes an RF variable-gain LNA (low noise amplifier), a PLL (phase-locked loop) synthesized local oscillator, quadrature (I + Q) downconverting mixers, baseband lowpass filters with programmable cutoff frequency, and variable-gain baseband amplifiers.

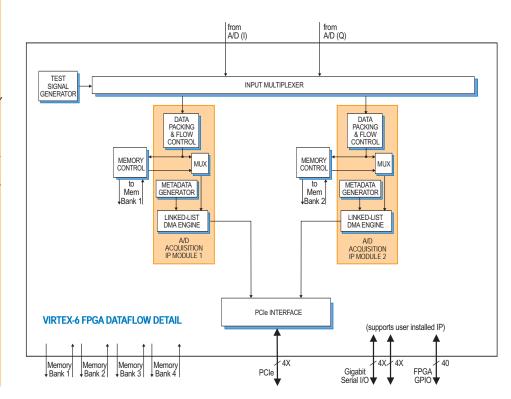
The fractional-N PLL synthesizer locks its VCO to the timing generator output, or to an external reference input between 12 and 30 MHz. Together, the baseband amplifiers and the RF LNA offer a programmable linear gain range of 60 dB.

An integrated lowpass filter with variable bandwidth provides bandwidths ranging from 4 to 40 MHz, programmable with 8 bits of resolution.

A/D Converter Stage

The analog baseband I and Q analog tuner outputs are then applied to two Texas Instruments ADS5485 200 MHz, 16-bit A/D converters. The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other board resources.

A/D Clocking and Synchronization


An internal timing generator provides all timing, gating, triggering and synchronization functions required by the A/D converters. It also serves as an optional source for the L-Band tuner reference.

The front panel SSMC clock input can be used directly as the A/D sample clock. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (voltage-controlled crystal oscillator). In this mode, the front panel SSMC clock input connector accepts a 10 MHz reference signal for synchronizing the VCXO using a PLL.

The timing generator uses a front panel LVPECL 26-pin clock/sync connector for one clock, two sync, and two gate/trigger signals. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate/ trigger signals within the board. In the master mode, the LVPECL bus drives output timing signals to synchronize multiple slave boards, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources

The 52690 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, all DDR3 SDRAM, or as combination of two banks of each type of memory.

A/D Acquisition IP Modules

The 52690 features two A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from either of the two A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

PCI Express Interface

The Model 52690 includes an industry standard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x4, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

ordering information		
Model 52690	Description L-Band RF Tuner with 2-Channel 200 MHz A/D and Virtex-6 FPGA - 3U VPX	
Options:		
-062	XC6VLX240T FPGA	
-064	XC6VSX315T FPGA	
-104	LVDS FPGA I/O to VPX P2	
-105	Gigabit serial FPGA I/O to VPX P1	
-150	Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)	
-160	Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4)	
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)	
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)	

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System.
	See 8267 Datasheet for
	Options

L-Band RF Tuner, 2-Channel 200 MHz A/D, Virtex-6 FPGA - 3U VPX

► Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

The factory-installed A/D Acquisition Modules use memory banks 1 & 2. Banks 3 & 4 can be optionally installed to support custom user-installed IP within the FPGA.

Specifications

Front Panel Analog Signal Input Connector: Front panel female SSMC Impedance: 50 ohms

L-Band Tuner

Type: Maxim MAX2112 Input Frequency Range: 925 MHz to 2175 MHz

Monolithic VCO Phase Noise: -97 dBc/Hz at 10 kHz

Fractional-N PLL Synthesizer: freq_{VCO} = (N.F) x freq_{REF} where integer N = 19 to 251 and fractional F is a 20-bit binary value PLL Reference (freq_{REF}): Front panel SSMC connector or on-board 27 MHz crystal (Option -100), 12 to 30 MHz LNA Gain: 0 to 65 dB, controlled by a programmable 12-bit D/A converter* Baseband Amplifier Gain: 0 to 15 dB, in 1 dB steps*

*Usable Full-Scale Input Range: -50 dBm to +10 dBm

Baseband Low Pass Filter: Cutoff frequency programmable from 4 to 40 MHz with 8-bit resolution

A/D Converters Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits

Sample Clock Sources: On-board timing generator/synthesizer

A/D Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16, for the A/D clock

Timing Generator External Clock Input Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 200 MHz (up to 800 MHz when Timing Generator divider is enabled) or PLL system reference

Timing Generator Bus: 26-pin front panel connector LVPECL bus includes, clock/ sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/ PPS inputs

External Trigger Input Quantity: 2

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T or XC6VSX315T

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory

Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR **Option 155 or 165:** Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen. 2: x4 Environmental

Operating Temp: 0° to 50° C **Storage Temp:** –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	52xxx	53xxx
Form Factor	3U '	VPX
# of XMCs	One	XMC
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs o	n VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458

Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

Models 57690 & 58690

Features

- One or two L-Band tuners accept RF signals from 925 MHz to 2175 MHz
- One or two programmable LNAs boost LNB (low-noise block) antenna signal levels with up to 60 dB gain
- One or two programmable analog downconverters provide I + Q baseband signals with bandwidths ranging from 4 to 40 MHz
- Two or four 200 MHz 16-bit A/Ds
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Up to 2 or 4 GB of DDR3 SDRAM; or: 32 MB or 64MB of QDRII+ SRAM
- PCI Express (Gen. 1 & 2) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- Ruggedized and conductioncooled versions available

One or two L-Band RF Tuners, 2- or 4-Channel 200 MHz A/D, Virtex-6 FPGA - 6U OpenVPX

General Information

Models 57690 and 58690 are members of the Cobalt® family of high-performance 6U OpenVPX boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71690 XMC modules mounted on a VPX carrier board.

Model 57690 is a 6U board with one Model 71690 module while the Model 58690 is a 6U board with two XMC modules rather than one.

These models include one ot two L-Band RF tuners, two or four A/Ds and four or eight banks of memory.

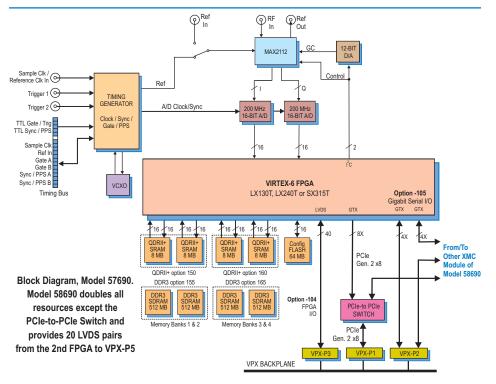
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions in these models include two or four A/D acquisition IP modules. IP modules for either DDR3 or QDRII+ memories, controllers for all data clocking and synchronization functions, test signal generators, and a PCIe interface complete the factory-installed functions and

enable these models to operate as complete turnkey solutions without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57690; P3 and P5, Model 58690.

Option -105 supports serial protocalls by providing a 4X gigabit link between the FPGA and VPX P2, Model 57690; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58690.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

► RF Tuner Stages

One or two front panel SSMC connectors accept L-Band signals between 925 MHz and 2175 MHz from the antenna LNBs (low noise blocks). The Maxim MAX2112 tuners directly convert these L-Band signals to baseband using broadband I/Q downconverters.

The devices include RF variable-gain LNAs (low noise amplifiers), PLL (phaselocked loops) synthesized local oscillators, quadrature (I + Q) downconverting mixers, baseband lowpass filters with programmable cutoff frequency, and variable-gain baseband amplifiers.

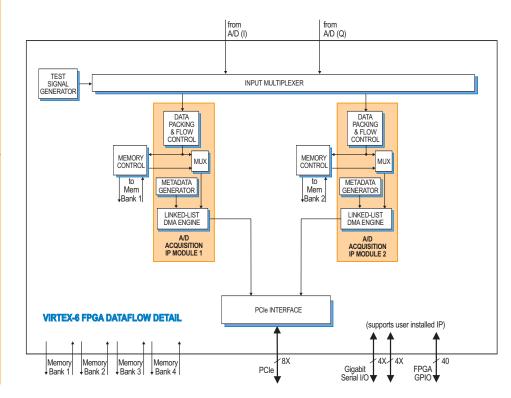
The fractional-N PLL synthesizers lock their VCOs to the timing generator output, or to an external reference input between 12 and 30 MHz. Together, the baseband amplifiers and the RF LNAs offer a programmable linear gain range of 60 dB.

The integrated lowpass filters with variable bandwidths provide bandwidths ranging from 4 to 40 MHz, programmable with 8 bits of resolution.

A/D Converter Stages

The analog baseband I and Q analog tuner outputs are then applied to two or four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters. The digital outputs are delivered into the Virtex-6 FPGAs for signal processing, data capture or for routing to other board resources.

A/D Clocking and Synchronization


An internal timing generator provides all timing, gating, triggering and synchronization functions required by the A/D converters. It also serves as an optional source for the L-Band tuner reference.

The front panel SSMC clock input can be used directly as the A/D sample clock. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (voltage-controlled crystal oscillator). In this mode, the front panel SSMC clock input connector accepts a 10 MHz reference signal for synchronizing the VCXO using a PLL.

The timing generator uses a front panel LVPECL 26-pin clock/sync connector for one clock, two sync, and two gate/trigger signals. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate/ trigger signals within the bosrd. In the master mode, the LVPECL bus drives output timing signals to synchronize multiple slave bosrds, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources

The Cobalt architecture supports up to four or eight independent memory banks which can be configured with all QDRII+ SRAM, all DDR3 SDRAM, or as combination of two banks of each type of memory. >

A/D Acquisition IP Modules

These models feature two or fourA/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from either of the two A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

Models 57690 & 58690

Model 8264

The Model 8264 is a fullyintegrated development system for Pentek Cobalt and Onyx 6U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

ModelDescription57690L-Band RF Tuner with
2-Channel 200 MHz A/D
and Virtex-6 FPGA - 6U
VPX58690Dual L-Band RF Tuner
with 4-Channel 200 MHz
A/D and two Virtex-6
FPGAs - 6U VPX

Options: -062 XC6VLX240T FPGA -064 XC6VSX315T FPGA -104 LVDS I/O between the FPGA and P3 connector. Model 57690; P3 and P5 connectors, Model 58690 Gigabit link between the -105 FPGA and P2 connector, Model 57690; gigabit links from each FPGA to P2 connector, Model 58690 Two 8 MB QDRII+ -150 SRAM Memory Banks (Banks 1 and 2) -160 Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4) -155 Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2) -165 Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8264 VPX Development System. See 8264 Datasheet for Options

One or two L-Band RF Tuners, 2- or 4-Channel 200 MHz A/D, Virtex-6 FPGA - 6U OpenVPX

➤ Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

The factory-installed A/D acquisition modules use memory banks 1 & 2. Banks 3 & 4 can be optionally installed to support custom user-installed IP within the FPGA.

PCI Express Interface

These models include an industrystandard interface fully compliant with PCI Express Gen. 1 and 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Specifications

Model 57690: One RF tuner, two A/Ds Model 58690: Two RF tuners, four A/Ds Front Panel Analog Signal Inputs (1 or 2) **Connector:** Front panel female SSMC Impedance: 50 ohms L-Band Tuners (1 or 2) Type: Maxim MAX2112 Input Frequency Range: 925 MHz to 2175 MHz Monolithic VCO Phase Noise: -97 dBc/Hz at 10 kHz Fractional-N PLL Synthesizer: $freq_{VCO} = (N.F) x freq_{RFE}$ where integer N = 19 to 251 and fractional F is a 20-bit binary value **PLL Reference (**freq_{REF}): Front panel SSMC connector or on-board 27 MHz crystal (Option -100), 12 to 30 MHz LNA Gain: 0 to 65 dB, controlled by a programmable 12-bit D/A converter* Baseband Amplifier Gain: 0 to 15 dB, in 1 dB steps* *Usable Full-Scale Input Range: -50 dBm to +10 dBm Baseband Low Pass Filter: Cutoff frequency programmable from 4 to 40 MHz with 8-bit resolution A/D Converters (2 or 4)

Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits

Sample Clock Sources (1 or 2)

On-board timing generator/synthesizer A/D Clock Synthesizers (1 or 2)

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8, or 16, for the

A/D clock Timing Generator External Clock Inputs (1 or 2)

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 200 MHz (up to 800 MHz when Timing Generator divider is enabled) or PLL system reference

Timing Generator Bus (1 or 2): 26-pin front panel connector LVPECL bus includes, clock/sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/ PPS inputs

External Trigger Inputs (2 or 4) Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or2) Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T or XC6VSX315T

Custom I/O

Option -104: Provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57690; P3 and P5, Model 58690

Option -105: Supports serial protocols by providing a 4X gigabit link between the FPGA and VPX P2, Model 57690; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58690

Memory Banks (1 or 2)

Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or 2: x4 or x8 Environmental: Level L1 & L2 air-cooled; Level L3 ruggedized, conduction-cooled Size: 3.937 in. x6.717 in. (100 mm x 170.6 mm)

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Models 72690, 73690 and 74690

One or two L-Band RF Tuners, 2- or 4-Channel 200 MHz A/D, Virtex-6 FPGA - cPCI

Model 74690 Model 73690

Features

- One or two L-Band tuners accept RF signals from 925 MHz to 2175 MHz
- One or two programmable LNAs boost LNB (low-noise block) antenna signal levels with up to 60 dB gain
- One or two programmable analog downconverters provide I + Q baseband signals with bandwidths ranging from 4 to 40 MHz
- Two or four 200 MHz 16-bit A/Ds
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Up to 2 or 4 GB of DDR3 SDRAM; or: 32 MB or 64MB of QDRII+ SRAM
- Clock/sync bus for multiboard synchronization
- **Optional LVDS connections** to the Virtex-6 FPGA for custom I/O

General Information

Models 72690, 73690 and 74690 are members of the Cobalt® family of high performance CompactPCI boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71690 XMC modules mounted on a cPCI carrier board.

Model 72690 is a 6U cPCI board while the Model 73690 is a 3U cPCI board; both are equipped with one Model 71690 XMC. Model 74690 is a 6U cPCI board with two XMC modules rather than one.

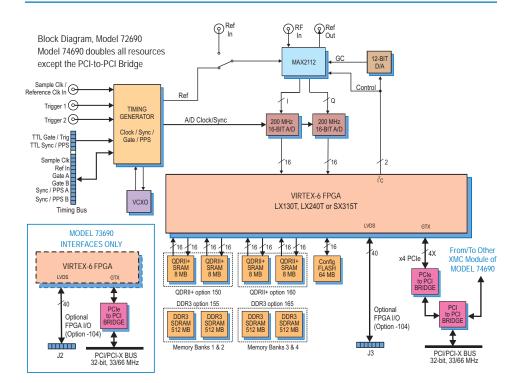
These models include one ot two L-Band RF tuners, two or four A/Ds and four or eight banks of memory.

The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions in these models include two or four A/D acquisition IP modules. IP modules for either DDR3 or QDRII+ memories, controllers for all data clocking and synchronization functions, a

test signal generator, and a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73690; J3 connector, Model 72690; J3 and J5 connectors, Model 74690. ►

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

► RF Tuner Stage

One or two front panel SSMC connectors accept L-Band signals between 925 MHz and 2175 MHz from the antenna LNBs (low noise blocks). The Maxim MAX2112 tuners directly convert these L-Band signals to baseband using broadband I/Q downconverters.

The devices include RF variable-gain LNAs (low noise amplifiers), PLL (phaselocked loops) synthesized local oscillators, quadrature (I + Q) downconverting mixers, baseband lowpass filters with programmable cutoff frequency, and variable-gain baseband amplifiers.

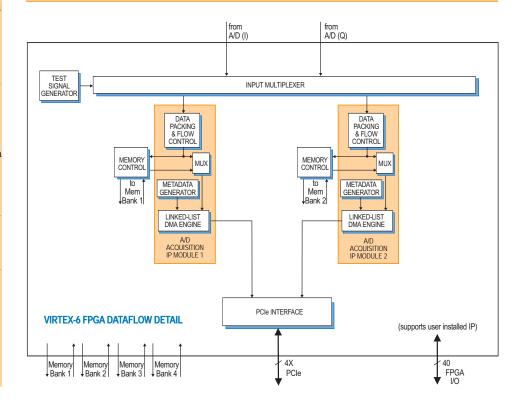
The fractional-N PLL synthesizers lock their VCOs to the timing generator output, or to an external reference input between 12 and 30 MHz. Together, the baseband amplifiers and the RF LNA offer a programmable linear gain range of 60 dB.

The integrated lowpass filters with variable bandwidths provide bandwidths ranging from 4 to 40 MHz, programmable with 8 bits of resolution.

A/D Converter Stage

The analog baseband I and Q analog tuner outputs are then applied to two or four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters. The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

A/D Clocking and Synchronization


An internal timing generator provides all timing, gating, triggering and synchronization functions required by the A/D converters. It also serves as an optional source for the L-Band tuner reference.

The front panel SSMC clock input can be used directly as the A/D sample clock. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (voltage-controlled crystal oscillator). In this mode, the front panel SSMC clock input connector accepts a 10 MHz reference signal for synchronizing the VCXO using a PLL.

The timing generator uses a front panel LVPECL 26-pin clock/sync connector for one clock, two sync, and two gate/trigger signals. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate/ trigger signals within the bosrd. In the master mode, the LVPECL bus drives output timing signals to synchronize multiple slave bosrds, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources

The Cobalt architecture supports up to four or eight independent memory banks which can be configured with all QDRII+ SRAM, all DDR3 SDRAM, or as combination of two banks of each type of memory. >

A/D Acquisition IP Modules

These models feature two or fourA/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from either of the two A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

One or two L-Band RF Tuners, 2- or 4-Channel 200 MHz A/D, Virtex-6 FPGA - cPCI

▶ Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

The factory-installed A/D acquisition modules use memory banks 1 & 2. Banks 3 & 4 can be optionally installed to support custom user-installed IP within the FPGA.

PCI-X Interface

The models include an industry-standard interface compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported. Model 73690: 32 bits only.

Specifications

Model 72690 or Model 73690: 1 RF tuner, 2 A/Ds Model 74690: 2 RF tuners, four A/Ds Front Panel Analog Signal Inputs (1 or 2)

Connector: Front panel female SSMC Impedance: 50 ohms L-Band Tuners (1 or 2)

Type: Maxim MAX2112 Input Frequency Range: 925 MHz to 2175 MHz

Monolithic VCO Phase Noise: -97 dBc/Hz at 10 kHz

Fractional-N PLL Synthesizer: $freq_{VCO} = (N.F) x freq_{REF}$ where integer N = 19 to 251 and fractional F is a 20-bit binary value

PLL Reference (freq_{REF}): Front panel SSMC connector or on-board 27 MHz crystal (Option -100), 12 to 30 MHz LNA Gain: 0 to 65 dB, controlled by a programmable 12-bit D/A converter* Baseband Amplifier Gain: 0 to 15 dB, in 1 dB steps*

*Usable Full-Scale Input Range: -50 dBm to +10 dBm

Baseband Low Pass Filter: Cutoff frequency programmable from 4 to 40 MHz with 8-bit resolution

A/D Converters (2 or 4) Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits

Sample Clock Sources (1 or 2)

On-board timing generator/synthesizer A/D Clock Synthesizers (1 or 2)

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16, for the A/D clock

Timing Generator External Clock Inputs (1 or 2)

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 200 MHz (up to 800 MHz when Timing Generator divider is enabled) or PLL system reference

Timing Generator Bus (1 or 2): 26-pin front panel connector LVPECL bus includes, clock/sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/ PPS inputs

External Trigger Inputs (2 or 4) Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or2) Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T or XC6VSX315T

Custom I/O

Option -104: Provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73690; J3 connector, Model 72690; J3 and J5 connectors, Model 74950

Memory Banks (1 or 2) Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-X Interface

PCI-X Bus: 32 or 64 bits at 33 or 66 MHz Model 73690: 32 bits only

Environmental

Operating Temp: 0° to 50° C Storage Temp: –20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: Standard 6U or 3U cPCI board

Ordering Information

Description

L-Band RF Tuner with

XC6VLX240T FPGA

XC6VSX315T FPGA

LVDS I/O between the

Model 72690; J3 and J5

SRAM Memory Banks (Banks 1 and 2)

SRAM Memory Banks

SDRAM Memory Banks (Banks 1 and 2)

Two 8 MB QDRII+

Two 8 MB QDRII+

(Banks 3 and 4)

Two 512 MB DDR3

Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

FPGA and J2 connector,

Model 73690: J3 connector.

connectors, Model 74690

2-Channel 200 MHz A/D and Virtex-6 FPGA - XMC

Model

71690

Options:

-062

-064

-104

-150

-160

-155

-165

Features

- Accepts RF signals from 925 MHz to 2175 MHz
- Programmable LNA boosts LNB (low-noise block) antenna signal levels with up to 60 dB gain
- Programmable analog downconverter provides
 I + Q baseband signals with bandwidths ranging from
 4 to 40 MHz
- Two 200 MHz 16-bit A/Ds digitize the I + Q signals synchronously
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- 2 GB of DDR3 SDRAM or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- Clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1 & 2) interface, up to x8
- AMC.1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)
- Optional front panel LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 56690 is a member of the Cobalt[®] family of high-performance AMC modules based on the Xilinx Virtex-6 FPGA. A 2-Channel high-speed data converter, it is suitable for connection directly to the RF port of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

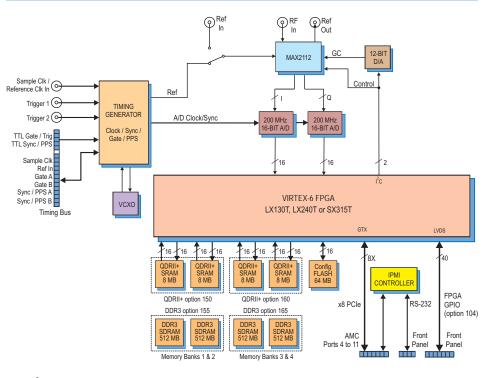
It includes an L-Band RF tuner, two A/Ds and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 56690 includes a front panel general-purpose connector for application-specific I/O.

The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 56690 factory-installed functions include two A/D acquisition IP modules.

IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 56690 to operate as a complete turnkey solution without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs a front panel connector with 20 pairs of LVDS connections to the FPGA for custom I/O. >

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

► **RF** Tuner Stage

A front panel SSMC connector accepts L-Band signals between 925 MHz and 2175 MHz from an antenna LNB (low noise block). A Maxim MAX2112 tuner directly converts these L-Band signals to baseband using a broadband I/Q downconverter.

The device includes an RF variable-gain LNA (low noise amplifier), a PLL (phase-locked loop) synthesized local oscillator, quadrature (I + Q) downconverting mixers, baseband lowpass filters with programmable cutoff frequency, and variable-gain baseband amplifiers.

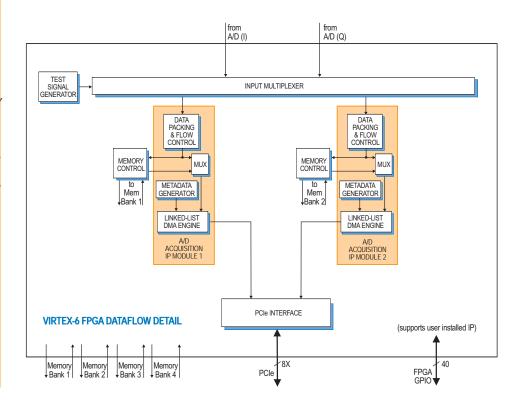
The fractional-N PLL synthesizer locks its VCO to the timing generator output, or to an external reference input between 12 and 30 MHz. Together, the baseband amplifiers and the RF LNA offer a programmable linear gain range of 60 dB.

An integrated lowpass filter with variable bandwidth provides bandwidths ranging from 4 to 40 MHz, programmable with 8 bits of resolution.

A/D Converter Stage

The analog baseband I and Q analog tuner outputs are then applied to two Texas Instruments ADS5485 200 MHz, 16-bit A/D converters. The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

A/D Clocking and Synchronization


An internal timing generator provides all timing, gating, triggering and synchronization functions required by the A/D converters. It also serves as an optional source for the L-Band tuner reference.

The front panel SSMC clock input can be used directly as the A/D sample clock. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (voltage-controlled crystal oscillator). In this mode, the front panel SSMC clock input connector accepts a 10 MHz reference signal for synchronizing the VCXO using a PLL.

The timing generator uses a front panel LVPECL 26-pin clock/sync connector for one clock, two sync, and two gate/trigger signals. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate/ trigger signals within the module. In the master mode, the LVPECL bus drives output timing signals to synchronize multiple slave modules, supporting synchronous sampling and sync functions across all connected modules.

Memory Resources

The 56690 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, all DDR3 SDRAM, or as combination of two banks of each type of memory. >

A/D Acquisition IP Modules

The 56690 features two A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from either of the two A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

➤ Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deeper memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

The factory-installed A/D acquisition modules use memory banks 1 & 2. Banks 3 & 4 can be optionally installed to support custom user-installed IP within the FPGA.

AMC Interface

The Model 56690 complies with the AMC.1 specification by providing an x8 PCIe connection to AdvancedTCA carriers or μ TCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller).

PCI Express Interface

The Model 56690 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

Front Panel Analog Signal Input **Connector:** Front panel female SSMC Impedance: 50 ohms **L-Band Tuner** Type: Maxim MAX2112 Input Frequency Range: 925 MHz to 2175 MHz Monolithic VCO Phase Noise: -97 dBc/Hz at 10 kHz Fractional-N PLL Synthesizer: $freq_{VCO} = (N.F) x freq_{REF}$ where integer N = 19 to 251 and fractional F is a 20-bit binary value **PLL Reference (**freq_{REF}): Front panel SSMC connector or on-board 27 MHz crystal (Option -100), 12 to 30 MHz LNA Gain: 0 to 65 dB, controlled by a programmable 12-bit D/A converter* Baseband Amplifier Gain: 0 to 15 dB, in 1 dB steps* *Usable Full-Scale Input Range: -50 dBm to +10 dBm Baseband Low Pass Filter: Cutoff fre-

Baseband Low Pass Filter: Cutoff frequency programmable from 4 to 40 MHz with 8-bit resolution

A/D Converters

Type: Texas Instruments ADS5485 **Sampling Rate:** 10 MHz to 200 MHz **Resolution:** 16 bits

Sample Clock Sources: On-board timing generator/synthesizer

A/D Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16, for the A/D clock

- Timing Generator External Clock Input Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 200 MHz (up to 800 MHz when Timing Generator divider is enabled) or PLL system reference
- Timing Generator Bus: 26-pin front panel connector LVPECL bus includes, clock/ sync/gate/PPS inputs and outputs; TTL signal for gate/trigger and sync/ PPS inputs

External Trigger Input Quantity: 2

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

- Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T, or XC6VSX315T
- Custom I/O

Option -104: Installs a front panel connector with 20 LVDS pairs to the FPGA

Memory Option 150 or 160: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface PCI Express Bus: Gen. 1 x4 or x8;

- Gen. 2 x4
- AMC Interface

Type: AMC.1 Module Management: IPMI Version 2.0

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. Size: Single-width, full-height AMC module, 2.89 in. x 7.11 in.

Ordering Information

Model	Description
56690	L-Band RF Tuner with 2-Channel 200 MHz A/D and Virtex-6 FPGA - AMC

Options:

-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O through front panel connector
-150	Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)
-160	Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4)
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

Contact Pentek for availability of rugged and conduction-cooled versions

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Four 200 MHz 16-bit A/Ds
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Advanced reconfigurability features
- VITA 42.0 XMC compatible with switched fabric interfaces
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

PENTEK

General Information

Model 71760 is a member of the Onyx[®] family of high-performance XMC modules based on the Xilinx Virtex-7 FPGA. A multichannel, high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its builtin data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

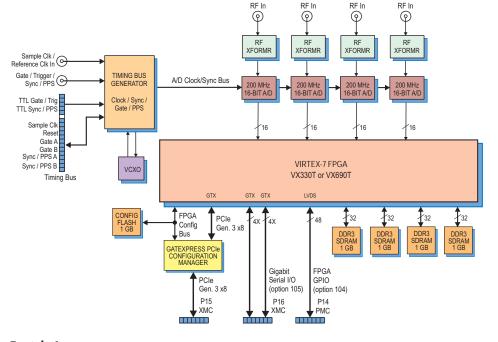
It includes four A/Ds and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, the Model 71760 includes general-purpose and gigabitserial connectors for application-specific I/O.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 71760 factory-installed functions include four A/D acquisition IP modules for simplifying data capture and data transfer. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factoryinstalled functions and enable the 71760 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 installs the P14 PMC connector with 24 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with dual 4X gigabit links to the FPGA to support serial protocols. >

A/D Acquisition IP Modules

The 71760 features four A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the four A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

PENTE

GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

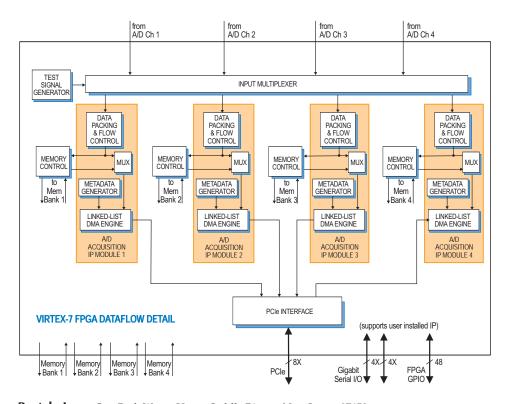
The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.


A/D Converter Stage

The front end accepts four full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other module resources.

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An on-board clock generator receives an >

<u>Model 8266</u>

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards (Models 78xxx). It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information			
Model	Description		
71760	4-Channel 200 MHz A/D with Virtex-7 FPGA - XMC		
Options:			
-073	XC7VX330T-2 FPGA		
-076	XC7VX690T-2 FPGA		
-104	LVDS FPGA I/O through P14 connector		
-105	Gigabit serial FPGA I/O through P16 connector		

.

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

> external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltagecontrolled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple modules to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple modules.

Multiple 71760's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected modules.

Memory Resources

The 71760 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

XMC Interface

The Model 71760 complies with the VITA 42.0 XMC specification. Two connectors each provide dual 4X links or a single 8X link with up to 10 Gb/sec per lane. With dual XMC connectors, the 71760 supports x8 PCIe on the first XMC connector leaving the second connector free to support userinstalled transfer protocols specific to the target application.

PCI Express Interface

The Model 71760 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz

A/D Converters

Type: Texas Instruments ADS5485 **Sampling Rate:** 10 MHz to 200 MHz **Resolution:** 16 bits

Sample Clock Sources: On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus: 26-pin front panel connector; LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2

Custom I/O

Option -104: Installs the PMC P14 connector with 24 LVDS pairs to the FPGA **Option -105:** Installs the XMC P16 connector configurable as one 8X or two 4X gigabit serial links to the FPGA

Memory

Type: DDR3 SDRAM **Size:** Four banks, 1 GB each

Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 Gen. 3 available only with the VX330T-2 and VX690T-2 FPGAs

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** –20° to 90° C

Relative Humidity: 0 to 95%, non-cond.

Size: Standard XMC module, 2.91 in. x 5.87 in.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Four 200 MHz 16-bit A/Ds
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Advanced reconfigurability features
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

General Information

Model 78760 is a member of the Onyx[®] family of high-performance PCIe boards based on the Xilinx Virtex-7 FPGA. A multichannel, high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its builtin data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

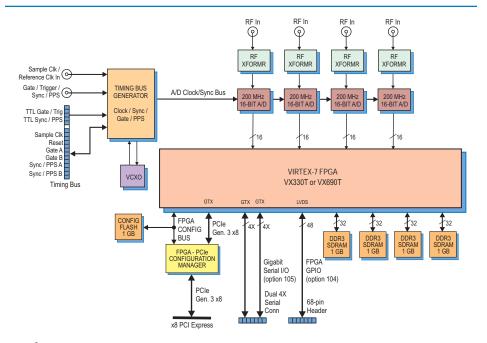
It includes four A/Ds and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, the Model 78760 includes optional general-purpose and gigabit-serial connectors for applicationspecific I/O protocols.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt Family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 78760 factory-installed functions include four A/D acquisition IP modules for simplifying data capture and data transfer. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 78760 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 connects 24 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105 connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board. \triangleright

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

A/D Acquisition IP Modules

The 78760 features four A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the four A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

PENTE

GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

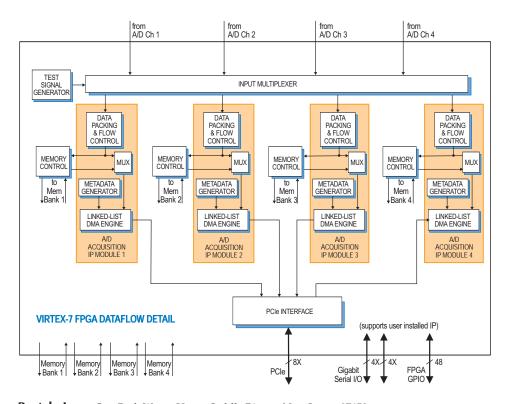
The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.


A/D Converter Stage

The front end accepts four full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other board resources.

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An on-board clock generator receives an >

<u>Model 8266</u>

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model 78760	Description 4-Channel 200 MHz A/D with Virtex-7 FPGA - x8 PCIe
Options:	
-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O through 68-pin ribbon cable connector
-105	Gigabit serial FPGA I/O through two 4X top edge connectors
Model	Description

8266 PC Development System See 8266 Datasheet for Options > external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple 78760's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources

The 78760 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 78760 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS5485

Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits

Sample Clock Sources: On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the

A/D clock External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus: 26-pin front panel connector; LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O

Option -104: Connects 24 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O. Option -105: Connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 Gen. 3 available only with the VX330T-2 and VX690T-2 FPGAs

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C **Relative Humidity:** 0 to 95%, non-cond. **Size:** Half length PCIe card, 4.38 in. x 7.13 in.

Model 53760 COTS (left) and rugged version

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Four 200 MHz 16-bit A/Ds
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- Advanced reconfigurability features
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 53760 is a member of the Onyx[®] family of high-performance 3U VPX boards based on the Xilinx Virtex-7 FPGA. A multichannel, high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its builtin data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

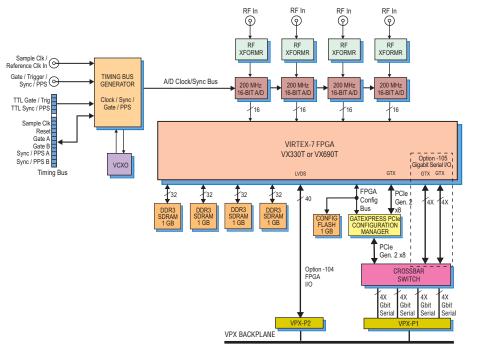
The 53760 includes four A/Ds and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt Family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 53760 factory-installed functions include four A/D acquisition IP modules for simplifying data capture and data transfer. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 53760 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

A/D Acquisition IP Modules

The 53760 features four A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the four A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

PENTE

GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

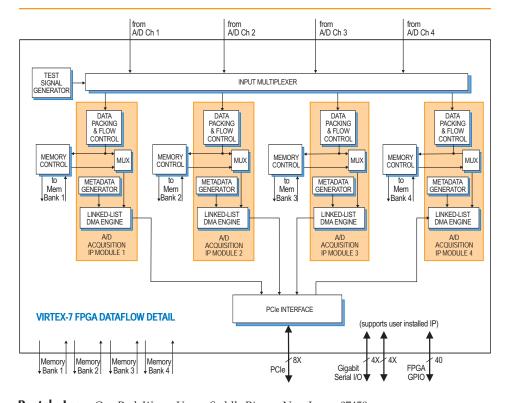
The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.


A/D Converter Stage

The front end accepts four full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other board resources.

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel >

PCI Express Interface

The Model 53760 includes an industry-standard interface fully compliant with PCI Express Gen. 1 and 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Fabric-Transparent Crossbar Switch

The 53760 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency. Programmable signal input equalization and output pre-emphasis settings enable optimization.

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	0
Model	Description
53760	4-Channel 200 MHz A/D with Virtex-7 FPGA - 3U VPX
Options:	
-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8267 VPX Development System See 8267 Datasheet for Options ➤ SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple 53760's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources

The 53760 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS5485

Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits

Sample Clock Sources: On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus: 26-pin front panel connector; LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen. 2: x4 or x8; Environmental

Operating Temp: 0° to 50° C

Storage Temp: -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 53xxx and the 52xxx. For more information on a 52xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX	Family	Comparison

	52xxx	53xxx	
Form Factor	3U Y	VPX	
# of XMCs	One XMC		
Crossbar Switch	No	Yes	
PCIe path	VPX P1	VPX P1 or P2	
PCIe width	x4	x4 or x8	
Option -104 path	24 pairs on VPX P2	20 pairs on VPX P2	
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2	
Lowest Power	Yes	No	
Lowest Price	Yes	No	

Model 52760 COTS (left) and rugged version

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Four 200 MHz 16-bit A/Ds
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPX[™] System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 52760 is a member of the Onyx[®] family of high-performance 3U VPX boards based on the Xilinx Virtex-7 FPGA. A multichannel, high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its builtin data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

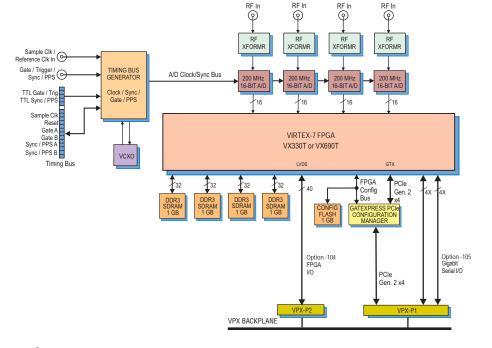
The 52760 includes four A/Ds and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt Family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 52760 factory-installed functions include four A/D acquisition IP modules for simplifying data capture and data transfer. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 52760 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

A/D Acquisition IP Modules

The 52760 features four A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the four A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

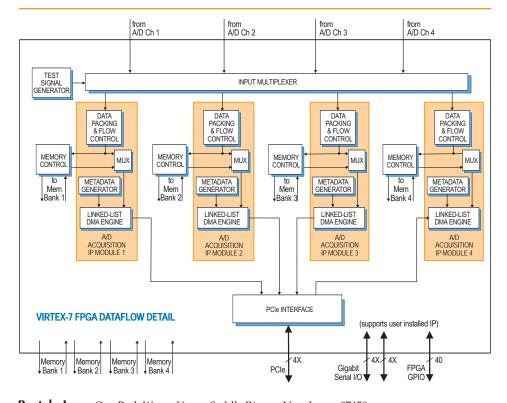
The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.


A/D Converter Stage

The front end accepts four full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other board resources.

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

PCI Express Interface

The Model 52760 includes an industry-standard interface fully compliant with PCI Express Gen. 1 and 2 bus specifications. Supporting PCIe links up to x4, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering	Information
Orucing	mormation

Model	Description	
52760	4-Channel 200 MHz A/D with Virtex-7 FPGA - 3U VPX	
Options:		

-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8267 VPX Development System See 8267 Datasheet for Options ➤ SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple 52760's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources

The 52760 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS5485

Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits

Sample Clock Sources: On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus: 26-pin front panel connector; LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen. 2: x4 Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family	Comparison
------------	------------

	52xxx	53xxx	
Form Factor	3U Y	3U VPX	
# of XMCs	One XMC		
Crossbar Switch	No	Yes	
PCIe path	VPX P1	VPX P1 or P2	
PCIe width	x4	x4 or x8	
Option -104 path	24 pairs on VPX P2	20 pairs on VPX P2	
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2	
Lowest Power	Yes	No	
Lowest Price	Yes	No	

Models 57760 & 58760

4- or 8-Channel 200 MHz, 16-bit A/D with Virtex-7 FPGA - 6U OpenVPX

Model 58760

Features

- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Four or eight 200 MHz 16-bit A/Ds
- 4 or 8 GB of DDR3 SDRAM
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- Ruggedized and conductioncooled versions available

General Information

Models 57760 and 58760 are members of the Onyx[®] family of high-performance 6U OpenVPX boards based on the Xilinx Virtex-7 FPGA. They consist of one or two Model 71760 XMC modules mounted on a VPX carrier board.

Model 57760 is a 6U board with one Model 71760 module while the Model 58760 is a 6U board with two XMC modules rather than one.

These models include four or eight A/Ds and four or eight banks of memory.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions of these models include four or eight A/D acquisition IP modules for simplifying data capture and data transfer.

IP modules for DDR3 SDRAM memories, controllers for all data clocking and synchronization functions, test signal generators, and a PCIe interface complete the factoryinstalled functions and enable these models to operate as complete turnkey solutions without the need to develop FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 24 LVDS pairs between the FPGA and the VPX P3 connector, Model 57760; P3 and P5, Model 58760.

Option -105 supports serial protocalls by providing a 4X gigabit link between the FPGA and VPX P2, Model 57760; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58760. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

A/D Acquisition IP Modules

eight A/D Acquisition IP Mod-

ules for easily capturing and

moving data. Each IP module

can receive data from any of

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines

for easily moving A/D data through the PCIe interface. These powerful linked-list DMA

engines are capable of a unique

Acquisition Gate Driven mode. In this mode, the length of a trans-

fer performed by a link definition

need not be known prior to data acquisition; rather, it is governed

by the length of the acquisition

gate. This is extremely useful in

applications where an external

gate drives acquisition and the

exact length of that gate is not

four A/Ds or the test signal

generator

These models feature four or

4- or 8-Channel 200 MHz, 16-bit A/D with Virtex-7 FPGA - 6U OpenVPX

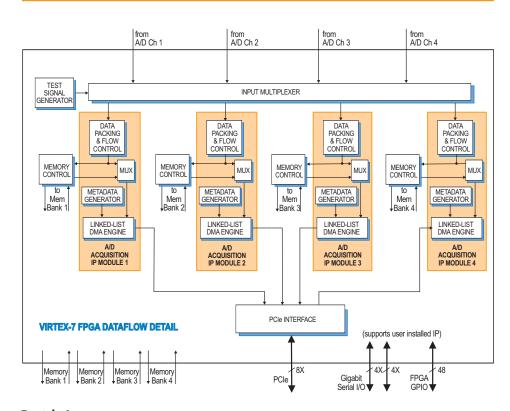
GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGAs. At power-up, GateXpress immediately presents a target for the host computer to discover, effectively giving the FPGAs time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user. In this case, it's programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power-up the user can choose which image to load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGAs with new IP images. The first option is to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded as needed.


The third option, typically used during development, allows the user to directly load the FPGAs through JTAG using Xilinx iMPACT.

In all three FPGA-loading scenarios, GateXpress handles the hardware negotiation thereby simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without the need to reset the host computer so it can rediscover the board. After the reload, the host computer simply continues to see the board with the expected device ID.

A/D Converter Stages

The front end accepts four or eight fullscale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four or eight Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-7 FPGAs for signal processing, data capture or for routing to other board resources. >

known or is likely to vary. For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

4- or 8-Channel 200 MHz, 16-bit A/D with Virtex-7 FPGA - 6U OpenVPX

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An onboard clock generator receives an external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple boards can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources

The Onyx architecture supports four or eight independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

These models include an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Specifications

Model 57760: 4 A/Ds Model 58760: 8 A/Ds

Front Panel Analog Signal Inputs (4 or 8) Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz

A/D Converters (4 or 8)

Type: Texas Instruments ADS5485 **Sampling Rate:** 10 MHz to 200 MHz **Resolution:** 16 bits

Sample Clock Sources: (1 or 2) On-board clock synthesizer

Clock Synthesizers (1 or 2)

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clocks (1 or 2)

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus (1 or 2)

26-pin front panel connector; LVPECL bus includes, clock/sync/gate/PPS inputs and outputs; TTL signal for gate/ trigger and sync/PPS inputs

External Trigger Inputs (1 or 2) Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2

Custom I/O

Option -104: Provides 24 LVDS pairs between the FPGA and the VPX P3 connector, Model 57760; P3 and P5, Model 58760

Option -105: Supports serial protocols by providing a 4X gigabit link between the FPGA and VPX P2, Model 57760; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58760.

Memory Banks (4 or 8)

Type: DDR3 SDRAM

Size: 1 GB each

Speed: 800 MHz (1600 MHz DDR) PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 **Environmental:** Level L1 & L2 air-cooled;

Level L3 ruggedized, conduction-cooled **Size:** 3.937 in. x6.717 in. (100 mm x 170.6 mm)

Model 8264

The Model 8264 is a fullyintegrated development system for Pentek Cobalt and Onyx 6U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

- ModelDescription577604-Channel 200 MHz 16-bit
A/D with Virtex-7 FPGA -
6U VPX587608-Channel 200 MHz 16-bit
A/D with two Virtex-7
- FPGAs 6U VPX

Options: -076 XC7VX690T-2 FPGA

- -104 LVDS I/O between the FPGA and P3 connector, Model 57760; P3 and P5 connectors, Model 58760
- -105 Gigabit link between the FPGA and P2 connector, Model 57760; gigabit links from each FPGA to P2 connector, Model 78760

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8264	VPX Development System. See 8264 Datasheet for Options

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Models 72760, 73760 and 74760

Model 74760 Model 73760

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCI/PCI-X bus
- Four or eight 200 MHz 16-bit A/Ds
- Four or eight GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

General Information

Models 72760, 73760 and 74760 are members of the Onyx[®] family of high-performance CompactPCI boards based on the Xilinx Virtex-7 FPGA. They consist of one or two Model 71760 XMC modules mounted on a cPCI carrier board.

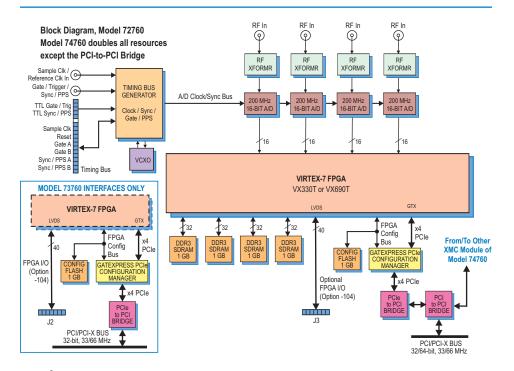
Model 72760 is a 6U cPCI board while the Model 73760 is a 3U cPCI board; both are equipped with one Model 71760 XMC. Model 74760 is a 6U cPCI board with two XMC modules rather than one.

These models include four or eight A/Ds and four or eight banks of memory.

The Onyx Architecture

The Pentek Onyx Architecture features Virtex-7 FPGAs. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions of these models include four or eight A/D acquisition IP modules for simplifying data capture and data transfer. IP modules for DDR3 SDRAM memories, controllers for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factoryinstalled functions and enable these models to operate as complete turnkey solutions without the need to develop FPGA IP.


Extendable IP Design

For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73760; J3 connector, Model 72760; J3 and J5 connectors, Model 74760. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

These models feature four or eight A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of four A/Ds or the test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

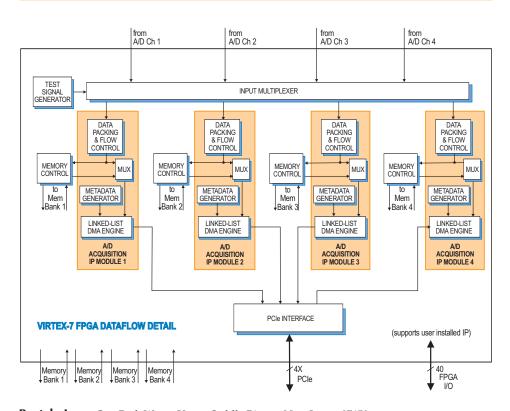
GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCI-X discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCI-X interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCI-X interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded as needed.


The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCI-X configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts four or eight fullscale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four or eight Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other board resources.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An onboard clock generator receives an external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

Multiple boards can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources

The Onyx architecture supports four or eight independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI-X Interface

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported. Model 73760: 32 bits only.

Specifications

Model 72760 or Model 73760: 4 A/Ds Model 74760: 8 A/Ds Front Panel Analog Signal Inputs (4 or 8) Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz

A/D Converters (4 or 8)

Type: Texas Instruments ADS5485 **Sampling Rate:** 10 MHz to 200 MHz **Resolution:** 16 bits

Sample Clock Sources: (1 or 2) On-board clock synthesizer

Clock Synthesizers (1 or 2)

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clocks (1 or 2)

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus (1 or 2)

26-pin front panel connector; LVPECL bus includes, clock/sync/gate/PPS inputs and outputs; TTL signal for gate/ trigger and sync/PPS inputs

External Trigger Inputs (1 or 2) Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2

Custom I/O

Option -104: provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73760; J3 connector, Model 72760; J3 and J5 connectors, Model 74760

Memory Banks (1 or 2) Type: DDR3 SDRAM Size: Four banks, 1 GB each

Speed: 800 MHz (1600 MHz DDR) PCI-X Interface

PCI-X Bus: 32 or 64 bits at 33 or 66 MHz Model 73760: 32 bits only

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** –20° to 90° C **Relative Humidity:** 0 to 95%, non-cond. **Size:** Standard 6U or 3U cPCI board

Ordering Information

ModelDescription727604-Channel 200 MHz 16-bit
A/D with Virtex-7 FPGA -
6U cPCI737604-Channel 200 MHz 16-bit
A/D with Virtex-7 FPGA -
3U cPCI747608-Channel 200 MHz 16-bit
A/D with two Virtex-7
FPGAs - 6U cPCI

Options:

-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
-104	LVDS I/O between the
	FPGA and J2 connector,
	Model 73760; J3 connector,
	Model 72760; J3 and J5
	connectors, Model 74760

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Four 200 MHz 16-bit A/Ds
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- AMC.1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)
- Optional front panel LVDS connections to the Virtex-7 FPGA for custom I/O

General Information

Model 56760 is a member of the Onyx[®] family of high-performance AMC modules based on the Xilinx Virtex-7 FPGA. A multichannel, high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its builtin data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

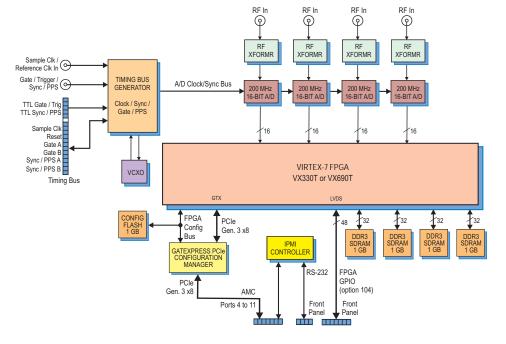
It includes four A/Ds and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, the Model 56760 includes a front panel general-purpose connector for applicationspecific I/O.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 56760 factory-installed functions include four A/D acquisition IP modules for simplifying data capture and data transfer.

IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factoryinstalled functions and enable the 56760 to operate as a complete turnkey solution without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 installs a front panel connector with 20 pairs of LVDS connections to the FPGA for custom I/O. ►

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

The 56760 features four A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the four A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

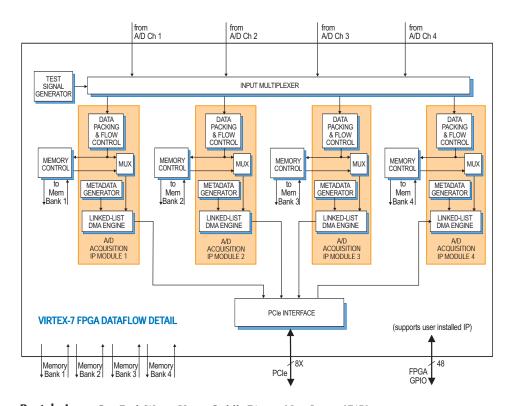
The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.


A/D Converter Stage

The front end accepts four full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other module resources.

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An on-board clock generator receives >

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 2018185900 Fax: 2018185904 Email: info@pentek.com

➤ an external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple modules to be synchronized. In the slave mode, it accepts LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple modules.

Multiple 56760's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected modules.

Memory Resources

The 56760 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory-installed functions, custom user- installed IP within the FPGA can take advantage of the memories for many other purposes.

AMC Interface

The Model 56760 complies with the AMC.1 specification by providing an x8 PCIe connection to AdvancedTCA carriers or μ TCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller).

PCI Express Interface

The Model 56760 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +8 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz

A/D Converters

Type: Texas Instruments ADS5485 **Sampling Rate:** 10 MHz to 200 MHz **Resolution:** 16 bits

Sample Clock Sources: On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

- Timing Bus: 26-pin front panel connector; LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs
- **External Trigger Input**

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

- Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O
- Custom I/O

Option -104: Installs a front panel connector with 20 LVDS pairs to the FPGA **Memory**

Type: DDR3 SDRAM **Size:** Four banks, 1 GB each

Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Gen. 3 available only with the VX330T-2 and VX690T-2 FPGAs

AMC Interface

Type: AMC.1 Module Management: IPMI Version 2.0

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. Size: Single-width, full-height AMC module, 2.89 in. x 7.11 in.

Ordering Information

	-
Model	Description
56760	4-Channel 200 MHz A/D with Virtex-7 FPGA - AMC
Options:	
-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O through front panel connector

Contact Pentek for availability of rugged and conduction-cooled versions

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- VITA 42.0 XMC compatible with switched fabric interfaces
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

General Information

Model 71730 is a member of the Onyx[®] family of high performance XMC modules based on the Xilinx Virtex-7 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

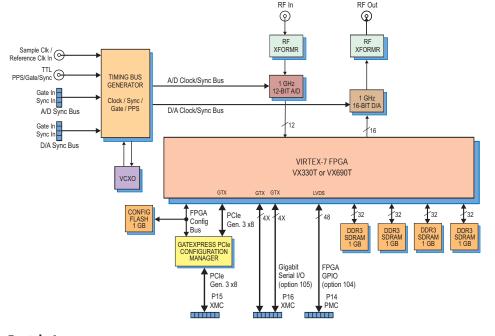
It includes 1 GHz A/D and D/A converters and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, the Model 71730 includes optional general purpose and gigabit serial card connectors for application-specific I/O.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 71730 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module for simplifying data capture and data transfer. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factoryinstalled functions and enable the 71730 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 installs the P14 PMC connector with 24 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with dual 4X gigabit links to the FPGA to support serial protocols. >

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904

Email: info@pentek.com

www.pentek.com

The 71730 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 71730 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. A linkedlist controller allows users to easily play back waveforms stored in either on-board memory or off- board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

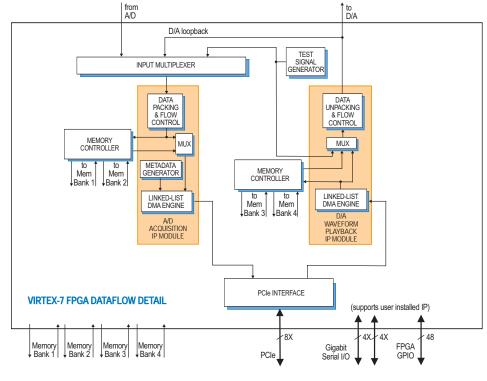
The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.


A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other module resources.

D/A Converter Stage

The 71730 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GS/sec, allowing it to accept full-rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through a front panel SSMC connector.

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

XMC Interface

The Model 71730 complies with the VITA 42.0 XMC specification. Two connectors each provide dual 4X links or a single 8X link with up to 10 Gb/sec per lane. With dual XMC connectors, the 71730 supports x8 PCIe on the first XMC connector leaving the second connector free to support user-installed transfer protocols specific to the target application.

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards (Models 78xxx). It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information		
Model	Description	
71730	1 GHz A/D and D/A, Virtex-7 FPGA - XMC	
Options	:	
-073	XC7VX330T-2 FPGA	
-076	XC7VX690T-2 FPGA	
-104	LVDS FPGA I/O through P14 connector	
-105	Gigabit serial FPGA I/O through P16 connector	
Conta	rt Poutok for availability	

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.

A pair of front panel μ Sync connectors allows multiple modules to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 7192 and Model 9192 Cobalt Synchronizers can drive multiple 71630 µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The 71730 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 71730 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front

A/D Converter Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits

D/A Converter

Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits

Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources: On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin μSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O

Option -104: Installs the PMC P14 connector with 24 LVDS pairs to the FPGA **Option -105:** Installs the XMC P16 connector configurable as one 8X or two 4X gigabit serial links to the FPGA

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 **Environmental**

Operating Temp: 0° to 50° C

Storage Temp: -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Standard XMC module, 2.91 in. x 5.87 in.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 78730 is a member of the Onyx[®] family of high-performance PCIe boards based on the Xilinx Virtex-7 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

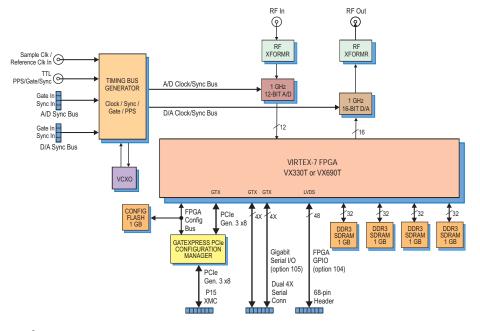
It includes 1 GHz A/D and 1 GHz D/A converters and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, the Model 78730 includes optional general-purpose and gigabit serial card connectors for application specific I/O.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 78730 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module for simplifying data capture and data transfer. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factoryinstalled functions and enable the 78730 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 connects 24 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105 connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board. >

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201818:5900 Fax: 201818:5904 Email: info@pentek.com

The 78730 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 78730 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. A linkedlist controller allows users to easily play back waveforms stored in either on-board memory or off- board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

GateXpress for FPGA Configuration

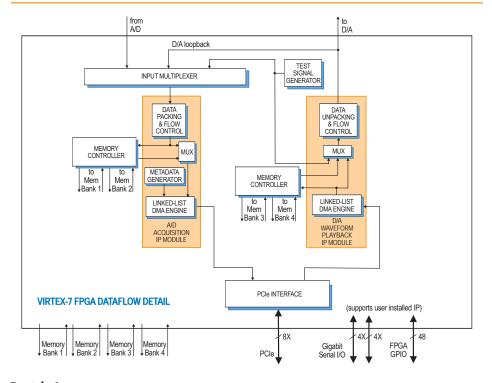
The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed. The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.


A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other board resources.

D/A Converter Stage

The 78630 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GSPS, allowing it to acept full rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through a front panel SSMC connector. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201-818-5900
Fax: 201-818-5904
Email: info@pentek.com

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

or dering monitation		
Model	Description	
78730	1 GHz A/D and D/A, Virtex-7 FPGA - x8 PCIe	
Options:		
-073	XC7VX330T-2 FPGA	
-076	XC7VX690T-2 FPGA	
-104	LVDS FPGA I/O through	
	68-pin ribbon cable	
	connector	
-105	Gigabit serial FPGA I/O	

through two 4X top edge connectors

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.

A pair of front panel µSync connectors allows multiple modules to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 7892 and Model 9192 Cobalt Synchronizers can drive multiple 78730 µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The 78730 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 78630 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits D/A Converter

Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max.

Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits

Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources: On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O

Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O. Option -105: Connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each **Speed:** 800 MHz (1600 MHz DDR)

PCI-Express Interface PCI Express Bus: Gen. 1, 2 or 3: x4 or x8

Environmental

Operating Temp: 0° to 50° C

Storage Temp: -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. Size: Half length PCIe card, 4.38 in. x 7.13 in.

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458 www.pentek.com Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Model 53730 COTS (left) and rugged version

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 53730 is a member of the Onyx[®] family of high performance 3U VPX boards based on the Xilinx Virtex-7 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution.

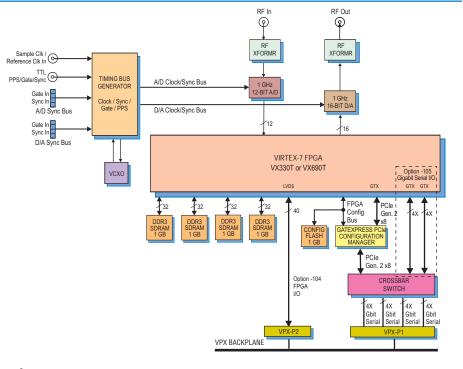
It includes 1 GHz A/D and D/A converters and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 53730 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module for simplifying data capture and data transfer. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factoryinstalled functions and enable the 53730 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

The 53730 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 53730 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. A linkedlist controller allows users to easily play back waveforms stored in either on-board memory or off- board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

PENTEK

GateXpress for FPGA Configuration

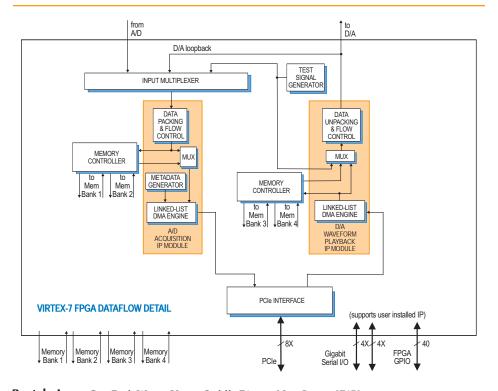
The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed. The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.


A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other module resources.

D/A Converter Stage

The 53730 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GSPS, allowing it to acept full rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through a front panel SSMC connector. >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

www.pentek.com

Memory Resources

The 53730 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

PCI Express Interface

The Model 53730 includes an industry-standard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Description
1 GHz A/D and D/A,
Virtex-7 FPGA - 3U VPX
XC7VX330T-2 FPGA
XC7VX690T-2 FPGA
LVDS FPGA I/O to VPX P2
Gigabit serial FPGA I/O to VPX P1

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System See 8267 Datasheet for
	Options

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.

A pair of front panel μ Sync connectors allows multiple modules to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

Crossbar Switch

The 53730 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency. Programmable signal input equalization and output pre-emphasis settings enable optimization.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits

D/A Converter Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits

Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources: On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 to support serial protocols

Memory

Type: DDR3 SDRAM

Size: Four banks, 1 GB each

Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen. 2: x4 or x8; Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 53xxx and the 52xxx. For more information on a 52xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	52xxx	53xxx
Form Factor	3U V	/PX
# of XMCs	One	XMC
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x4 or x8
Option -104 path	24 pairs on VPX P2	20 pairs on VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458

Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Model 52730 COTS (left) and rugged version

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1 and 2) interface up to x4
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 52730 is a member of the Onyx[®] family of high performance 3U VPX boards based on the Xilinx Virtex-7 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution.

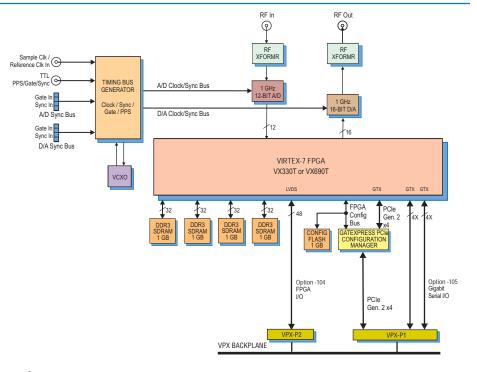
It includes 1 GHz A/D and D/A converters and four banks of memory. It features built-in support for PCI Express over the 3U VPX backplane.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 52730 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module for simplifying data capture and data transfer. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factoryinstalled functions and enable the 52730 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 24 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201·818·5900 & Fax: 201·818·5904 & Email: info@pentek.com

The 52730 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 52730 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. A linkedlist controller allows users to easily play back waveforms stored in either on-board memory or off- board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

GateXpress for FPGA Configuration

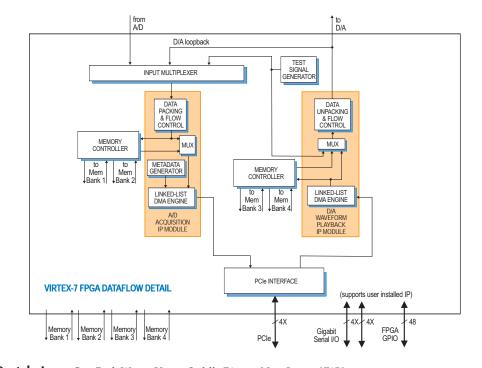
The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed. The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.


A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

D/A Converter Stage

The 52730 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GSPS, allowing it to acept full rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4rate input data. Analog output is through a front panel SSMC connector. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

www.pentek.com

Memory Resources

The 52730 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

PCI Express Interface

The Model 52730 includes an industry-standard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x4, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model 52730	Description 1 GHz A/D and D/A, Virtex-7 FPGA - 3U VPX
Options:	
-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System See 8267 Datasheet for Options

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.

A pair of front panel µSync connectors allows multiple modules to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 5292 and Model 9192 Cobalt Synchronizers can drive multiple 52730 µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter

Type: Texas Instruments ADS5400 **Sampling Rate:** 100 MHz to 1 GHz **Resolution:** 12 bits

D/A Converter Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits

Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources: On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O

Option -104: Provides 24 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory

Type: DDR3 SDRAM **Size:** Four banks, 1 GB each

Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen. 2: x4 Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C **Relative Humidity:** 0 to 95%, non-cond.

Size: 3.937 in. x6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	52xxx	53xxx
Form Factor	3U VPX	
# of XMCs	One XMC	
Crossbar Switch No Yes		Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x4 or x8
Option -104 path	24 pairs on VPX P2	20 pairs on VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458

Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

Models 57730 & 58730

1- or 2-Channel 1 GHz A/D, 1- or 2-Channel 1 GHz D/A with Virtex-7 FPGA - 6U OpenVPX

Model 58730

Features

- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One or two 1 GHz 12-bit A/D
- One or two 1 GHz 16-bit D/A
- 4 or 8 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Dual-µSync clock/sync bus for multiboard synchronization
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- Ruggedized and conductioncooled versions available

General Information

Models 57730 and 58730 are members of the Onyx[®] family of high-performance 6U OpenVPX boards based on the Xilinx Virtex-7 FPGA. They consist of one or two Model 71730 XMC modules mounted on a VPX carrier board.

Model 57730 is a 6U board with one Model 71730 module while the Model 58730 is a 6U board with two XMC modules rather than one.

These models include one or two 1 GHz A/D and D/A converters and four or eight banks of memory

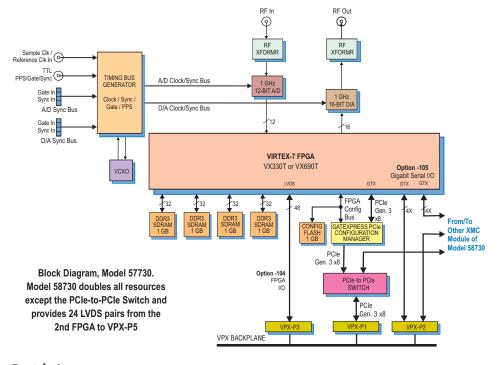
The Onyx Architecture

The Pentek Onyx Architecture features Virtex-7 FPGAs. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions of these models include one or two A/D acquisition and one or two D/A waveform playback IP modules for simplifying data capture and data transfer.

IP modules for DDR3 SDRAM memories, controllers for all data clocking and synchronization functions, test signal generators, and a PCIe interface complete the factoryinstalled functions and enable these models to operate as complete turnkey solutions without the need to develop FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 24 LVDS pairs between the FPGA and the VPX P3 connector, Model 57730; P3 and P5, Model 58730.

Option -105 supports serial protocalls by providing a 4X gigabit link between the FPGA and VPX P2, Model 57730; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58730. >

www.pentek.com

1- or 2-Channel 1 GHz A/D, 1- or 2-Channel 1 GHz D/A with Virtex-7 FPGA - 6U OpenVPX

A/D Acquisition IP Module

These models feature one or two A/D Acquisition IP Modules for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Modules

The factory-installed functions include one or two sophisticated D/A Waveform Playback IP modules. A linked-list controller allows users to easily play back waveforms stored in either on-board memory or offboard host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 or 128 individual link entries can be chained together to create complex waveforms with a minimum of programming.

► GateXpress for FPGA Configuration

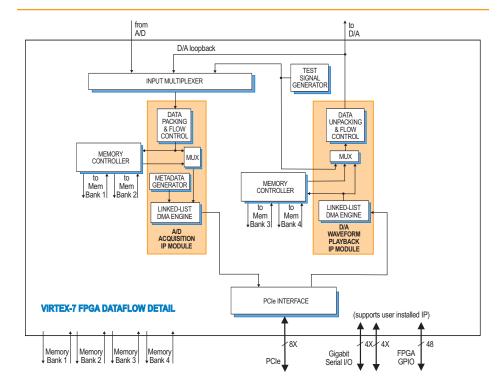
The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGAs. At power-up, GateXpress immediately presents a target for the host computer to discover, effectively giving the FPGAs time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user. In this case, it's programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power-up the user can choose which image to load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGAs with new IP images. The first option is to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded as needed. The third option, typically used during development, allows the user to directly load the FPGAs through JTAG using Xilinx iMPACT.

In all three FPGA-loading scenarios, GateXpress handles the hardware negotiation thereby simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without the need to reset the host computer so it can rediscover the board. After the reload, the host computer simply continues to see the board with the expected device ID.


A/D Converter Stages

The front end accepts one or two analog HF or IF inputs on front panel SSMC connectors with transformer coupling into one or two Texas Instruments ADS5400 1 GHz, 12-bit A/D converters.

The digital outputs are delivered into the Virtex-7 FPGAs for signal processing, data capture or for routing to other board resources.

D/A Converter Stages

These models feature one or two TI DAC5681Z 1 GHz, 16-bit D/As. The converters have an input sample rate of 1 GSPS, allowing them to acept full rate data from the FPGA. Additionally, the D/As include a 2x or 4x interpolation filter for applications that provide 1/2- or 1/4-rate input data. Analog output is through front panel SSMC connectors.

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

1- or 2-Channel 1 GHz A/D, 1- or 2-Channel 1 GHz D/A with Virtex-7 FPGA - 6U OpenVPX

PCI Express Interface

These models include an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Model 8264

The Model 8264 is a fullyintegrated development system for Pentek Cobalt and Onyx 6U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
57730	1 GHz A/D and D/A with Virtex-7 FPGA - 6U VPX
58730	Two 1 GHz A/Ds and D/As, with two Virtex-7 FPGAs - 6U VPX
Options:	

070

-076	XC7VX690T-2 FPGA
-104	LVDS I/O between the FPGA and P3 connector, Model 57730; P3 and P5 connectors, Model 58730
-105	Gigabit link between the FPGA and P2 connector, Model 57730; gigabit links from each FPGA to P2 connector, Model 78730

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description 8264 VPX Development System. See 8264 Datasheet for Options

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.

A pair of front panel µSync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 9192 Cobalt or Onyx Synchronizer can drive multiple µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The Onyx architecture supports four or eight independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

Specifications

Model 57730: 1 A/D, 1 D/A

- Model 58730: 2 A/Ds, 2 D/As Front Panel Analog Signal Inputs (1 or 2) Input Type: Transformer-coupled, front
- panel female SSMC connectors A/D Converters (1 or 2)
- Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits
- D/A Converters (1 or 2) **Type:** Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. **Interpolation Filter:** bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits

Front Panel Analog Signal Outputs (1 or 2) Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources (1 or 2) On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizers (1 or 2)

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz Clock Dividers: External clock or VCXO

can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock

External Clocks (1 or 2)

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus (1 or 2): 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O (1 or 2)

Option -104: Provides 24 LVDS pairs between the FPGA and the VPX P3 connector, Model 57730; P3 and P5, Model 58730

Option -105: Supports serial protocols by providing a 4X gigabit link between the FPGA and VPX P2, Model 57730; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58730

Memory Banks (4 or 8)

Type: DDR3 SDRAM

Size: 1 GB each

Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 Environmental: Level L1 & L2 air-cooled;

Level L3 ruggedized, conduction-cooled Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458 www.pentek.com Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Model 73730 Model 74730

General Information

Models 72730, 73730 and 74730 are members of the Onyx® family of high performance CompactPCI boards based on the Xilinx Virtex-7 FPGA. They consist of one or two Model 71730 XMC modules mounted on a cPCI carrier board.

Model 72730 is a 6U cPCI board while the Model 73730 is a 3U cPCI board; both are equipped with one Model 71730 XMC. Model 74730 is a 6U cPCI board with two XMC modules rather than one.

These models include one or two 1 GHz A/D and D/A converters and four or eight banks of memory

The Onyx Architecture

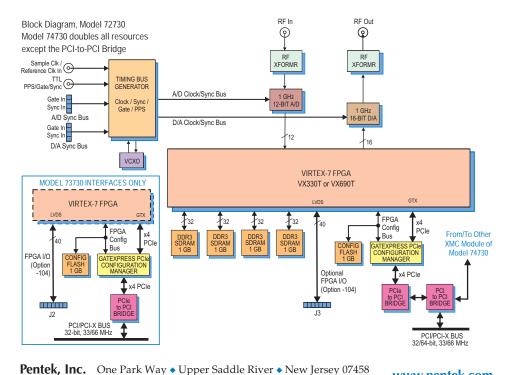
The Pentek Onyx Architecture features Virtex-7 FPGAs. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions of these models include ne or two A/D acquisition and one or two D/A waveform playback IP modules for simplifying data capture and data transfer.

IP modules for DDR3 SDRAM memories, controllers for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factoryinstalled functions and enable these models to operate as complete turnkey solutions without the need to develop FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.


Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73730; J3 connector, Model 72730; J3 and J5 connectors, Model 74730. ►

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCI/PCI-X bus
- One or two 1 GHz 12-bit A/D
- One or two 1 GHz 16-bit D/A
- Four or eight GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multimodule synchronization
- **Optional LVDS connections** to the Virtex-7 FPGA for custom I/O

Pentek, Inc. Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

www.pentek.com

These models feature one or two A/D Acquisition IP Modules for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Modules

The factory-installed functions include one or two sophisticated D/A Waveform Playback IP modules. A linked-list controller allows users to easily play back waveforms stored in either on-board memory or offboard host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 or 128 individual link entries can be chained together to create complex waveforms with a minimum of programming.

► GateXpress for FPGA Configuration

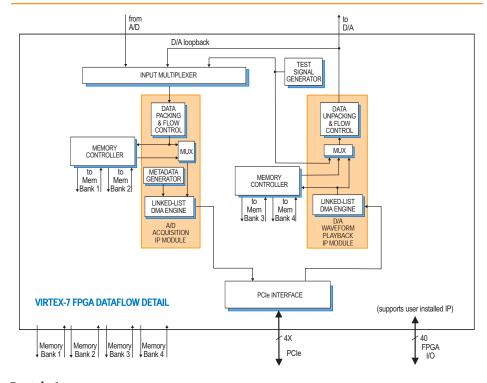
The Onyx architecture includes GateXpress, a sophisticated FPGA configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCI-X discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCI-X interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCI-X interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded as needed. The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCI-X configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.


A/D Converter Stage

The front end accepts one or two analog HF or IF input on front panel SSMC connectors with transformer coupling into one or two Texas Instruments ADS5400 1 GHz, 12-bit A/D converters.

The digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other module resources.

D/A Converter Stage

These models feature one or two TI DAC5681Z 1 GHz, 16-bit D/As. The converters have an input sample rate of 1 GSPS, allowing them to acept full rate data from the FPGA. Additionally, the D/As include a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through front panel SSMC connectors.

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 2018185900 Fax: 2018185904 Email: info@pentek.com

1- or 2-Channel 1 GHz A/D, 1- or 2-Channel 1 GHz D/A with Virtex-7 FPGA - cPCI

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.

A pair of front panel μ Sync connectors allows multiple modules to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 7192 and Model 9192 Cobalt Synchronizers can drive multiple 71630 µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The Onyx architecture supports four or eight independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

Specifications

Model 72730 or Model 73730: 1 A/D, 1 D/A Model 74730: 2 A/Ds, 2 D/As Front Panel Analog Signal Inputs (1 or 2) Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converters (1 or 2) Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits

D/A Converters (1 or 2) Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits Front Panel Analog Signal Outputs (1 or 2) Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources (1 or 2) On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizers (1 or 2)

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A

External Clocks (1 or 2)

clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2

Custom I/O Option -104: Pr

Option -104: Provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73730; J3 connector, Model 72730; J3 and J5 connectors, Model 74730

Memory Banks (1 or 2)

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-X Interface

PCI-X Bus: 32 or 64 bits at 33 or 66 MHz Model 73730: 32 bits only

Environmental Operating Temp: 0° to 50° C Storage Temp: –20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: Standard 6U or 3U cPCI board

PCI-X Interface

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported. Model 73730: 32 bits only.

Ordering Information

Model	Description
72730	1 GHz A/D and D/A, Virtex-7 FPGA - 6U cPCI
73730	1 GHz A/D and D/A, Virtex-7 FPGA - 3U cPCI
74730	Two 1 GHz A/D and D/A, Virtex-7 FPGA - 6U cPCI
Options:	

-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
-104	LVDS I/O between the FPGA and J2 connector,
	Model 73730; J3 connector,
	Model 72730; J3 and J5
	connectors, Model 74730

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201.818:5900

Fax: 201.818:5904

Email: info@pentek.com

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- AMC.1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)
- Optional front panel LVDS connections to the Virtex-7 FPGA for custom I/O

General Information

Model 56730 is a member of the Onyx[®] family of high performance AMC modules based on the Xilinx Virtex-7 FPGA. A highspeed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

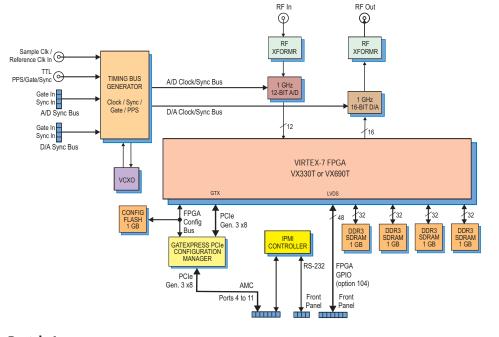
It includes 1 GHz A/D and D/A converters and four banks of memory. In addition to supporting PCI Express Gen.3 as a native interface, the Model 56730 includes a front panel general-purpose connector for application-specific I/O.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 56730 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module for simplifying data capture and data transfer.

IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factoryinstalled functions and enable the 56730 to operate as a complete turnkey solution, without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 installs a front panel connector with 24 pairs of LVDS connections to the FPGA for custom I/O. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

www.pentek.com

The 56730 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 56730 factoryinstalled functions include a sophisticated D/A Waveform Playback IP module. A linkedlist controller allows users to easily play back waveforms stored in either on-board memory or off- board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

GateXpress for FPGA Configuration

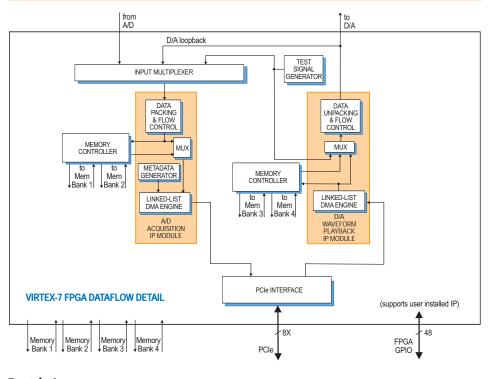
The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed. The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.


A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

D/A Converter Stage

The 56730 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GSPS, allowing it to acept full rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through a front panel SSMC connector. >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201·818·5900 & Fax: 201·818·5904 & Email: info@pentek.com

AMC Interface

The Model 56730 complies with the AMC.1 specification by providing an x8 PCIe connection to AdvancedTCA carriers or μ TCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller).

PCI Express Interface

The Model 56730 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Ordering Information

	-
Model	Description
56730	1 GHz A/D and D/A, Virtex-7 FPGA - AMC
Options:	
-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to front pannel connector

Contact Pentek for availability of rugged and conduction-cooled versions

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks.

A pair of front panel μ Sync connectors allows multiple modules to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 5692 and Model 9192 Cobalt Synchronizers can drive multiple 56730 µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The 56730 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory-installed functions, custom user- installed IP within the FPGA can take advantage of the memories for many other purposes.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors
A/D Converter Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits
D/A Converter Type: Texas Instruments DAC5681Z Input Data Pate: 1 CHz max

Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits

Front Panel Analog Signal Outputs Output Type: Transformer-coupled,

front panel female SSMC connectors

Sample Clock Sources: On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phaselocked to an external 4 to 200 MHz system reference, typically 10 MHz Clock Dividers: External clock or VCXO

can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2

Custom I/O

Option -104: Installs a front panel connector with 24 LVDS pairs to the FPGA **Memory**

Type: DDR3 SDRAM

Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; **AMC Interface**

Type: AMC.1

Module Management: IPMI Version 2.0 Environmental

Operating Temp: 0° to 50° C

Storage Temp: -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. Size: Single-width, full-height AMC module, 2.89 in. x 7.11 in.

General Information

Model 71741 is a member of the Onyx[®] family of high-performance XMC modules based on the Xilinx Virtex-7 FPGA. A highspeed data converter with a programmable digital downconverter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution.

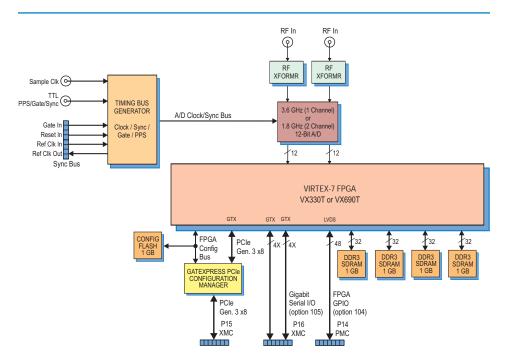
It includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, Model 71741 includes an optional connection to the Virtex-7 FPGA for custom I/O.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 71741 factory-installed functions include an A/D acquisition IP module and a programmable digital downconverter. In addition, IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 71741 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 installs the P14 PMC connector with 24 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with dual 4X gigabit links to the FPGA to support serial protocols. >

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- Programmable one- or twochannel DDC (Digital Downconverter)
- 4 GB of DDR3 SDRAM
- µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, w/ Wideband DDC, Virtex-7 FPGA - XMC

A/D Acquisition IP Module

The 71741 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

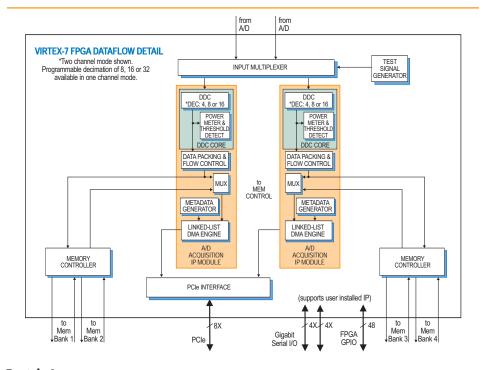
DDC IP Cores

Within the FPGA is a powerful DDC IP core. The core supports a single-channel mode, accepting data samples from the A/D at the full 3.6 GHz rate. Additionally, a dual-channel mode supports the A/D's 1.8 GHz two-channel operation .

In dual-channel mode, each DDC has an independent 32-bit tuning frequency setting that ranges from DC to f_{s} , where f_{s} is the A/D sampling frequency.

In single-channel mode, decimation can be programmed to 8x, 16x or 32x. In dual-channel mode, both channels share the same decimation rate, programmable to 4x, 8x or 16x.

The decimating filter for each DDC accepts a unique set of user-supplied 16-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8*f_s/N$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 16-bit I + 16-bit Q samples at a rate of f_s/N .


GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed. >

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458 Tel: 201·818·5900 ◆ Fax: 201·818·5904 ◆ Email: info@pentek.com

1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, w/ Wideband DDC, Virtex-7 FPGA - XMC

Memory Resources

The 71741 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards (Models 78xxx). It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	•
Model	Description
71741	1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D with Wideband DDC, Virtex-7 FPGA - XMC
Options:	
-073	XC7VX330T-2 FPGA

-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O through
	P14 connector
-105	Gigabit serial FPGA I/O
	through P16 connector

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

➤ The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 71741 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple modules.

The A/D digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other module resources.

PCI Express Interface

The Model 71741 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Clocking and Synchronization

The 71741 accepts a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel µSync bus connector allows multiple modules to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. Two 71741's can be synchronized with a simple cable. For larger systems, multiple 71741's can be synchronized using the Model 7192 highspeed sync module to drive the sync bus.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter

Type: Texas Instruments ADC12D1800 Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable Digital Downconverters Modes: One or two channels,

programmable

Supported Sample Rate: One-channel mode: 3.6 GHz, two-channel mode: 1.8 GHz

Decimation Range: One-channel mode: 8x, 16x or 32x, two-channel mode: 4x, 8x, or 16x

LO Tuning Freq. Resolution: 32 bits, 0 to f_s

LO SFDR: >120 dB

Phase Offset Resolution: 32 bits,

0 to 360 degrees

FIR Filter: User-programmable 18-bit coefficients

Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation

Sample Clock Source: Front panel SSMC connector

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O

Option -104: Installs the PMC P14 connector with 24 LVDS pairs to the FPGA **Option -105:** Installs the XMC P16 connector configurable as one 8X or two 4X gigabit serial links to the FPGA

Memory

Type: DDR3 SDRAM

Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 **Environmental**

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Standard XMC module, 2.91 in. x 5.87 in.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

General Information

Model 78741 is a member of the Onyx[®] family of high-performance PCIe modules based on the Xilinx Virtex-7 FPGA. A highspeed data converter with a programmable digital downconverter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution.

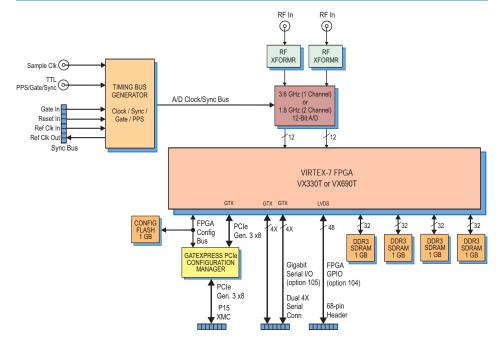
It includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, Model 78741 includes an optional connection to the Virtex-7 FPGA for custom I/O.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 78741 factory-installed functions include an A/D acquisition IP module and a programmable digital downconverter. In addition, IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 78741 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 connects 24 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105 connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board. \triangleright

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- Programmable one- or twochannel DDC (Digital Downconverter)
- 4 GB of DDR3 SDRAM
- µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818-5900 & Fax: 201/818-5904 & Email: info@pentek.com

The 78741 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

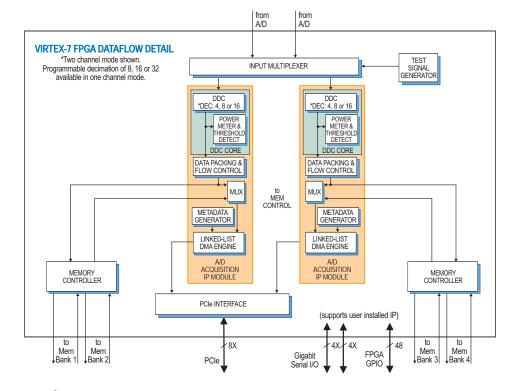
DDC IP Cores

Within the FPGA is a powerful DDC IP core. The core supports a single-channel mode, accepting data samples from the A/D at the full 3.6 GHz rate. Additionally, a dual-channel mode supports the A/D's 1.8 GHz two-channel operation .

In dual-channel mode, each DDC has an independent 32-bit tuning frequency setting that ranges from DC to f_s , where f_s is the A/D sampling frequency.

In single-channel mode, decimation can be programmed to 8x, 16x or 32x. In dual-channel mode, both channels share the same decimation rate, programmable to 4x, 8x or 16x.

The decimating filter for each DDC accepts a unique set of user-supplied 16-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8*f_s/N$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 16-bit I + 16-bit Q samples at a rate of f_s/N .


GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored >

Pentek, Inc. One Park Way & Upper Saddle River

New Jersey 07458
Tel: 201/818/5900

Fax: 201/818/5904

Email: info@pentek.com

1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, w/ Wideband DDC, Virtex-7 FPGA - x8 PCIe

Memory Resources

The 78741 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards (Models 78xxx). It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

ModelDescription717411-Ch. 3.6 GHz or 2-Ch.
1.8 GHz, 12-bit A/D with
Wideband DDC, Virtex-7
FPGA - XMC

Options:

-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O through 68-pin ribbon cable connector
-105	Gigabit serial FPGA I/O through two 4X top edge connectors

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

 on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 78741 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple boards.

PCI Express Interface

The Model 78741 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board

Clocking and Synchronization

The 78741 accepts a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel μ Sync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The μ Sync bus includes gate, reset, and in and out reference clock signals. Two 78741's can be synchronized with a simple cable. For larger systems, multiple 78741's can be synchronized using the Model 7892 highspeed sync board to drive the sync bus.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors

A/D Converter

Type: Texas Instruments ADC12D1800 Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable Digital Downconverters

Modes: One or two channels,

programmable

Supported Sample Rate: One-channel mode: 3.6 GHz, two-channel mode: 1.8 GHz

Decimation Range: One-channel mode: 8x, 16x or 32x, two-channel mode: 4x, 8x, or 16x

LO Tuning Freq. Resolution: 32 bits, 0 to f_s

LO SFDR: >120 dB

Phase Offset Resolution: 32 bits,

0 to 360 degrees

FIR Filter: User-programmable 18-bit coefficients

Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation

Sample Clock Source: Front panel SSMC connector

Timing Bus: 19-pin μSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O

Option -104: Connects 24 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O. **Option -105:** Connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors

along the top edge of the PCIe board

Memory

Type: DDR3 SDRAM **Size:** Four banks, 1 GB each

Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C **Relative Humidity:** 0 to 95%, non-cond.

Size: Half-length PCIe card, 4.38 in. x 7.13 in.

PENTEK

Pentek, Inc. One Park Way

Upper Saddle River
New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904

Email: info@pentek.com

Model 53741

Model 53741 COTS (left) and rugged version

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- Programmable one- or twochannel DDC (Digital Downconverter)
- 4 GB of DDR3 SDRAM
- µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- Compatible with several VITA standards including: *VITA-46, VITA-48 and VITA-65 (OpenVPX™ System Specification)*

1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, w/ Wideband DDC, Virtex-7 FPGA - 3U VPX

General Information

Model 53741 is a member of the Onyx[®] family of high-performance 3U VPX boards based on the Xilinx Virtex-7 FPGA. A highspeed data converter with a programmable digital downconverter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution.

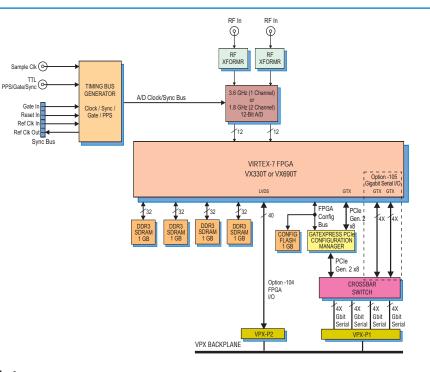
It includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, Model 53741 includes an optional connection to the Virtex-7 FPGA for custom I/O.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 53741 factory-installed functions include an A/D acquisition IP module and a programmable digital downconverter. In addition, IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 53741 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201-818-5900

Fax: 201-818-5904

Email: info@pentek.com

The 53741 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

DDC IP Cores

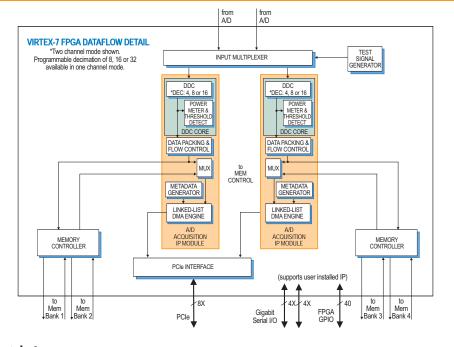
Within the FPGA is a powerful DDC IP core. The core supports a single-channel mode, accepting data samples from the A/D at the full 3.6 GHz rate. Additionally, a dual-channel mode supports the A/D's 1.8 GHz two-channel operation .

In dual-channel mode, each DDC has an independent 32-bit tuning frequency setting that ranges from DC to f_s , where f_s is the A/D sampling frequency.

In single-channel mode, decimation can be programmed to 8x, 16x or 32x. In dual-channel mode, both channels share the same decimation rate, programmable to 4x, 8x or 16x.

The decimating filter for each DDC accepts a unique set of user-supplied 16-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8*f_s/N$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 16-bit I + 16-bit Q samples at a rate of f_s/N .

GateXpress for FPGA Configuration


The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs. The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

Pentek, Inc. One Park Way

Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, w/ Wideband DDC, Virtex-7 FPGA - 3U VPX

Memory Resources

The 53741 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

Crossbar Switch

The 53741 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency. Programmable signal input equalization and output pre-emphasis settings enable optimization.

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	0
Model	Description
53741	1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D with Wideband DDC, Virtex-7 FPGA - 3U VPX
Options:	
-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System See 8267 Datasheet for Options

► A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 53741 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple boards.

Clocking and Synchronization

The 53741 accepts a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel µSync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. Two 53741's can be synchronized with a simple cable. For larger systems, multiple 53741's can be synchronized using the Model 5392 highspeed sync board to drive the sync bus.

PCI Express Interface

The Model 53741 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter Type: Texas Instruments ADC12D1800 Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable Digital Downconverters Modes: One or two channels,

programmable Supported Sample Rate: One-channel mode: 3.6 GHz, two-channel mode:

1.8 GHz

Decimation Range: One-channel mode: 8x, 16x or 32x, two-channel : 4x, 8x, or 16x

LO Tuning Freq. Resolution: 32 bits, 0 to f_s **LO SFDR:** >120 dB

Phase Offset Resolution: 32 bits, 0 to 360 degrees

FIR Filter: User-programmable 18-bit coefficients

Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation

- Sample Clock Source: Front panel SSMC connector
- Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML
- External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

- Field Programmable Gate Array
- Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O
 - **Option -104:** Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 to support serial protocols

Memory

- Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)
- PCI-Express Interface
- **PCI Express Bus:** Gen. 1, 2 or 3: x4 or x8 **Environmental**
 - **Operating Temp:** 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 53xxx and the 52xxx. For more information on a 52xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

	VPX Family	Comparison
	52xxx	53xxx
Form Factor	3U V	VPX
# of XMCs	One XMC	
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x4 or x8
Option -104 path	24 pairs on VPX P2	20 pairs on VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458

Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

Model 52741

Model 52741 COTS (left) and rugged version

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- Programmable one- or twochannel DDC (Digital Downconverter)
- 4 GB of DDR3 SDRAM
- µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x4
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- Compatible with several VITA standards including: *VITA-46, VITA-48 and VITA-65 (OpenVPX™ System Specification)*

1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, w/ Wideband DDC, Virtex-7 FPGA - 3U VPX

General Information

Model 52741 is a member of the Onyx[®] family of high-performance 3U VPX boards based on the Xilinx Virtex-7 FPGA. A highspeed data converter with a programmable digital downconverter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution.

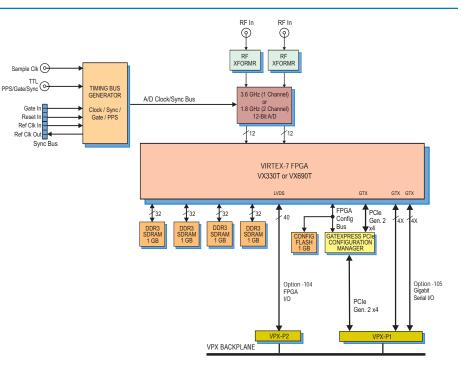
It includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, Model 52741 includes an optional connection to the Virtex-7 FPGA for custom I/O.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 52741 factory-installed functions include an A/D acquisition IP module and a programmable digital downconverter. In addition, IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 52741 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904

Email: info@pentek.com

A/D Acquisition IP Module

The 52741 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

DDC IP Cores

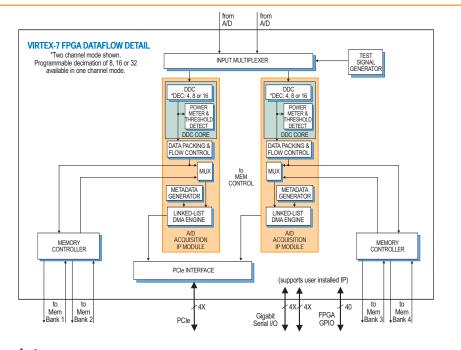
Within the FPGA is a powerful DDC IP core. The core supports a single-channel mode, accepting data samples from the A/D at the full 3.6 GHz rate. Additionally, a dual-channel mode supports the A/D's 1.8 GHz two-channel operation .

In dual-channel mode, each DDC has an independent 32-bit tuning frequency setting that ranges from DC to f_s , where f_s is the A/D sampling frequency.

In single-channel mode, decimation can be programmed to 8x, 16x or 32x. In dual-channel mode, both channels share the same decimation rate, programmable to 4x, 8x or 16x.

The decimating filter for each DDC accepts a unique set of user-supplied 16-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8*f_s/N$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 16-bit I + 16-bit Q samples at a rate of f_s/N .

GateXpress for FPGA Configuration


The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs. The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

Memory Resources

The 52741 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

PCI Express Interface

The Model 52741 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Ordering information		
Model	Description	
52741	1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D with Wideband DDC, Virtex-7 FPGA - 3U VPX	
Options:		
-073	XC7VX330T-2 FPGA	
-076	XC7VX690T-2 FPGA	
-104	LVDS FPGA I/O to VPX P2	
-105	Gigabit serial FPGA I/O to VPX P1	

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System See 8267 Datasheet for
	Options

PENTEK

1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, w/ Wideband DDC, Virtex-7 FPGA - 3U VPX

 continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 52741 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple boards.

Clocking and Synchronization

The 52741 accepts a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel μ Sync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The μ Sync bus includes gate, reset, and in and out reference clock signals. Two 52741's can be synchronized with a simple cable. For larger systems, multiple 52741's can be synchronized using the Model 5292 highspeed sync board to drive the sync bus.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter

Type: Texas Instruments ADC12D1800
Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz
Resolution: 12 bits
Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz
Full Scale Input: +2 dBm to +4 dBm, programmable
Digital Downconverters
Modes: One or two channels,

Supported Sample Rate: One-channel mode: 3.6 GHz, two-channel mode: 1.8 GHz

Decimation Range: One-channel mode: 8x, 16x or 32x, two-channel mode: 4x, 8x, or 16x

LO Tuning Freq. Resolution: 32 bits, 0 to f_s

LO SFDR: >120 dB

Phase Offset Resolution: 32 bits,

0 to 360 degrees FIR Filter: User-programmable 18-bit coefficients

Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation

Sample Clock Source: Front panel SSMC connector

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 **Environmental**

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 53xxx and the 52xxx. For more information on a 52xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

		•
	52xxx	53xxx
Form Factor	3U V	VPX
# of XMCs	One XMC	
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs on VPX P2	
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458

Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

www.pentek.com

General Information

Model 71741 is a member of the Onyx[®] family of high-performance XMC modules based on the Xilinx Virtex-7 FPGA. A highspeed data converter with a programmable digital downconverter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution.

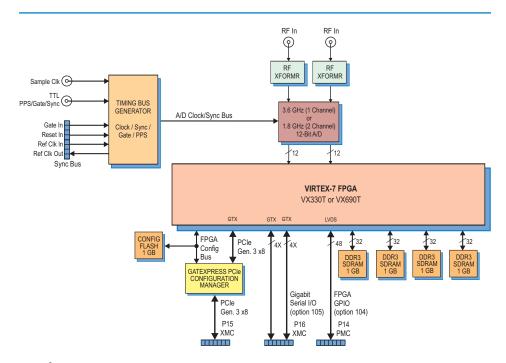
It includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, Model 71741 includes an optional connection to the Virtex-7 FPGA for custom I/O.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 71741 factory-installed functions include an A/D acquisition IP module and a programmable digital downconverter. In addition, IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 71741 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 installs the P14 PMC connector with 24 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with dual 4X gigabit links to the FPGA to support serial protocols. >

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- Programmable one- or twochannel DDC (Digital Downconverter)
- 4 GB of DDR3 SDRAM
- µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, w/ Wideband DDC, Virtex-7 FPGA - XMC

A/D Acquisition IP Module

The 71741 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

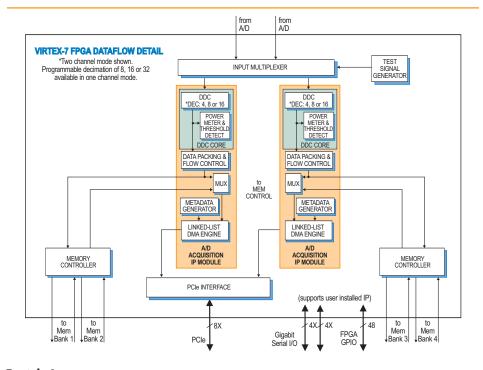
DDC IP Cores

Within the FPGA is a powerful DDC IP core. The core supports a single-channel mode, accepting data samples from the A/D at the full 3.6 GHz rate. Additionally, a dual-channel mode supports the A/D's 1.8 GHz two-channel operation .

In dual-channel mode, each DDC has an independent 32-bit tuning frequency setting that ranges from DC to f_{s} , where f_{s} is the A/D sampling frequency.

In single-channel mode, decimation can be programmed to 8x, 16x or 32x. In dual-channel mode, both channels share the same decimation rate, programmable to 4x, 8x or 16x.

The decimating filter for each DDC accepts a unique set of user-supplied 16-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8*f_s/N$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 16-bit I + 16-bit Q samples at a rate of f_s/N .


GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed. >

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458 Tel: 201·818·5900 ◆ Fax: 201·818·5904 ◆ Email: info@pentek.com

1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, w/ Wideband DDC, Virtex-7 FPGA - XMC

Memory Resources

The 71741 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

	0
Model	Description
71741	1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D with Wideband DDC, Virtex-7 FPGA - XMC
Options:	
-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
404	

-104	LVDS FPGA I/O through P14 connector
-105	Gigabit serial FPGA I/O through P16 connector

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

➤ The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 71741 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple modules.

The A/D digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other module resources.

PCI Express Interface

The Model 71741 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Clocking and Synchronization

The 71741 accepts a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel µSync bus connector allows multiple modules to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. Two 71741's can be synchronized with a simple cable. For larger systems, multiple 71741's can be synchronized using the Model 7192 highspeed sync module to drive the sync bus.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors

A/D Converter

Type: Texas Instruments ADC12D1800 Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable Digital Downconverters Modes: One or two channels,

programmable

Supported Sample Rate: One-channel mode: 3.6 GHz, two-channel mode: 1.8 GHz

Decimation Range: One-channel mode: 8x, 16x or 32x, two-channel mode: 4x, 8x, or 16x

LO Tuning Freq. Resolution: 32 bits, 0 to f_s

LO SFDR: >120 dB

Phase Offset Resolution: 32 bits,

0 to 360 degrees

FIR Filter: User-programmable 18-bit coefficients

Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation

Sample Clock Source: Front panel SSMC connector

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O

Option -104: Installs the PMC P14 connector with 24 LVDS pairs to the FPGA **Option -105:** Installs the XMC P16 connector configurable as one 8X or two 4X gigabit serial links to the FPGA

Memory

Type: DDR3 SDRAM

Size: Four banks, 1 GB each

Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 **Environmental**

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C **Relative Humidity:** 0 to 95%, non-cond.

Size: Standard XMC module, 2.91 in. x 5.87 in.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Model 74741 Model 73741

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- Programmable one- or twochannel DDCs (Digital Downconverters)
- 4 or 8 GB of DDR3 SDRAM
- µSync clock/sync bus for multiboard synchronization
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

General Information

Models 72741, 73741 and 74741 are members of the Onyx[®] family of high performance CompactPCI boards based on the Xilinx Virtex-7 FPGA. They consist of one or two Model 71741 XMC modules mounted on a cPCI carrier board.

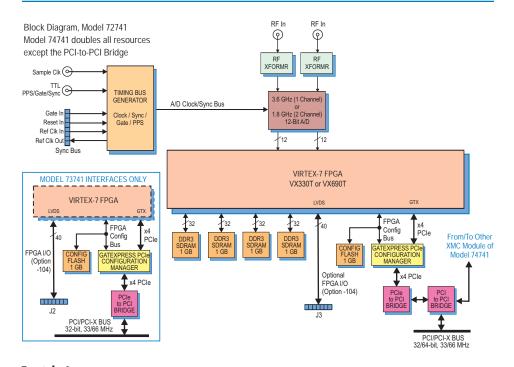
Model 72741 is a 6U cPCI board while the Model 73741 is a 3U cPCI board; both are equipped with one Model 71741 XMC. Model 74741 is a 6U cPCI board with two XMC modules rather than one.

These models include one or two 3.6 GHz, 12-bit A/D converters, four or eight banks of memory, and one or two wideband DDCs

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions of these models include one or two A/D acquisition IP modules and one or two wideband DDCs. In addition, IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions, without the need to develop any FPGA IP.


Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73741; J3 connector, Model 72741; J3 and J5 connectors, Model 74741. >

Models 72741, 73741 and 74741

A/D Acquisition IP Module

These models feature one or two A/D Acquisition IP Modules for easy capture and data moving. The IP modules can receive data from the A/D, or a test signal generator. The IP modules have associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode.

In single-channel mode, all banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

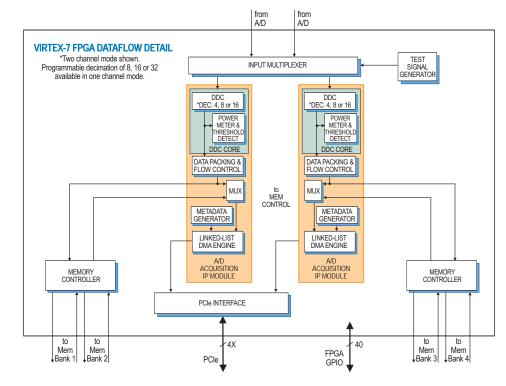
DDC IP Cores

Within the FPGA is a powerful DDC IP core. The core supports a single-channel mode, accepting data samples from the A/D at the full 3.6 GHz rate. Additionally, a dual-channel mode supports the A/D's 1.8 GHz two-channel operation .

In dual-channel mode, each DDC has an independent 32-bit tuning frequency setting that ranges from DC to f_s , where f_s is the A/D sampling frequency.

In single-channel mode, decimation can be programmed to 8x, 16x or 32x. In dual-channel mode, both channels share the same decimation rate, programmable to 4x, 8x or 16x.

The decimating filter for each DDC accepts a unique set of user-supplied 16-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8*f_s/N$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 16-bit I + 16-bit Q samples at a rate of f_s/N .


GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

Memory Resources

The Onyx architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

PCI-X Interface

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported. Model 73741: 32 bits only.

Ordering Information

0		
Model	Description	
72741	1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, with Wideband DDC, Virtex-7 FPGA - 6U cPCI	
73741	1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, with Wideband DDC, Virtex-7 FPGA - 3U cPCI	
74741	2-Ch. 3.6 GHz or 4-Ch. 1.8 GHz, 12-bit A/D, with Widebard DDC Virtur 7	

1.8 GHz, 12-bit A/D, with Wideband DDC, Virtex-7 FPGAs - 6U cPCI

Options:

- -073 XC7VX330T-2 FPGA
- -076 XC7VX690T-2 FPGA
- -104 LVDS I/O between the FPGA and J2 connector, Model 73741; J3 connector, Model 72741; J3 and J5 connectors, Model 74741

> on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing these models to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple boards.

The A/D digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other board resources.

Clocking and Synchronization

These models accept a 1.8 GHz dualedge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel µSync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. Two boards can be synchronized with a simple cable. For larger systems, multiple boards can be synchronized using the Models 7292, 7392 or 7492 high-speed sync boards to drive the sync bus.

Specifications

Model 72741 or Model 73741: One A/D Model 74741: Two A/Ds

Front Panel Analog Signal Inputs (2 or 4) Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converters (1 or 2) Type: Texas Instruments ADC12D1800 Sampling Rate: Single-channel mode: 500 MHz to 3.6 GHz; dual-channel mode: 150 MHz to 1.8 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable Digital Downconverters (2 or 4) Modes: One or two channels, programmable Supported Sample Rate: One-channel mode: 3.6 GHz, two-channel mode: 1.8 GHz Decimation Range: One-channel mode: 8x, 16x or 32x, two-channel mode: 4x, 8x. or 16x LO Tuning Freq. Resolution: 32 bits, 0 to f_s LO SFDR: >120 dB Phase Offset Resolution: 32 bits, 0 to 360 degrees FIR Filter: User-programmable 18-bit coefficients Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation Sample Clock Sources (1 or 2) Front panel SSMC connector Timing Bus (1 or 2) 19-pin µSync bus connector includes sync and gate/trigger inputs, CML External Trigger Input (1 or2) Type: Front panel female SSMC connector, LVTTL Function: Programmable functions include: trigger, gate, sync and PPS Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O Option -104: Provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73741; J3 connector, Model 72741; J3 and J5 connectors, Model 74741 Memory Banks (1 or 2) Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR) **PCI-X** Interface PCI-X Bus: 32 or 64 bits at 33 or 66 MHz Model 73741: 32 bits only Environmental **Operating Temp:** 0° to 50° C Storage Temp: –20° to 90° C **Relative Humidity:** 0 to 95%, non-cond. Size: Standard 6U or 3U cPCI board

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

General Information

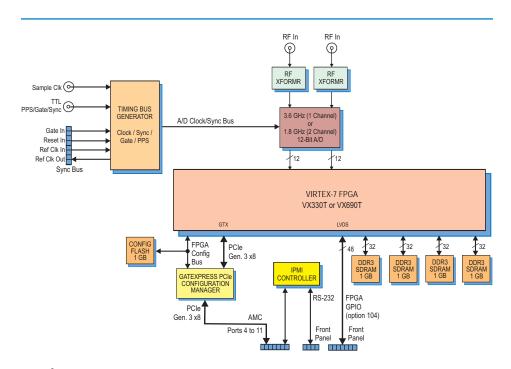
Model 56741 is a member of the Onyx[®] family of high-performance AMC modules based on the Xilinx Virtex-7 FPGA. A highspeed data converter with a programmable digital downconverter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution.

It includes a 3.6 GHz, 12-bit A/D converter and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, Model 56741 includes an optional front-panel connection to the Virtex-7 FPGA for custom I/O.

The Onyx Architecture

Based on the proven design of the Pentek Cobalt family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 56741 factory-installed functions include an A/D acquisition IP module and a programmable digital downconverter. In addition, IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 56741 to operate as a complete turnkey solution, without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA site can be populated with one of two FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Option -104 installs a front panel connector with 24 pairs of LVDS connections to the FPGA for custom I/O.

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- One-channel mode with 3.6 GHz, 12-bit A/D
- Two-channel mode with 1.8 GHz, 12-bit A/Ds
- Programmable one- or twochannel DDC (Digital Downconverter)
- 4 GB of DDR3 SDRAM
- µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- AMC.1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

www.pentek.com

A/D Acquisition IP Module

The 56741 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. In single-channel mode, all four banks are used to store the single-channel of input data. In dual-channel mode, memory banks 1 and 2 store data from input channel 1 and memory banks 3 and 4 store data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

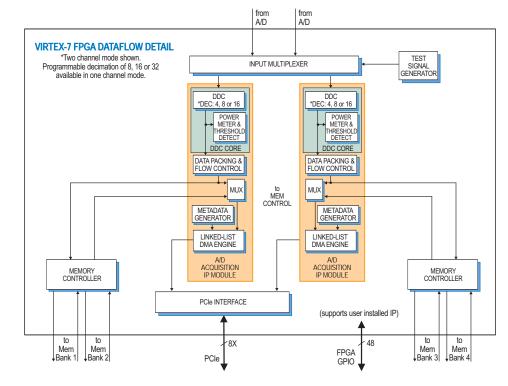
DDC IP Cores

Within the FPGA is a powerful DDC IP core. The core supports a single-channel mode, accepting data samples from the A/D at the full 3.6 GHz rate. Additionally, a dual-channel mode supports the A/D's 1.8 GHz two-channel operation .

In dual-channel mode, each DDC has an independent 32-bit tuning frequency setting that ranges from DC to f_s , where f_s is the A/D sampling frequency.

In single-channel mode, decimation can be programmed to 8x, 16x or 32x. In dual-channel mode, both channels share the same decimation rate, programmable to 4x, 8x or 16x.

The decimating filter for each DDC accepts a unique set of user-supplied 16-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8*f_s/N$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 16-bit I + 16-bit Q samples at a rate of f_s/N .


GateXpress for FPGA Configuration

The Onyx architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most PCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D, w/ Wideband DDC, Virtex-7 FPGA - AMC

A/D Converter

Type: Texas Instruments ADC12D1800

Sampling Rate: Single-channel mode:

500 MHz to 3.6 GHz; dual-channel

Memory Resources

The 56741 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

AMC Interface

The Model 56741 complies with the AMC.1 specification by providing an x8 PCIe connection to AdvancedTCA carriers or μ TCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller).

PCI Express Interface

The Model 56741 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Ordering Information

0
Description
1-Ch. 3.6 GHz or 2-Ch. 1.8 GHz, 12-bit A/D with Wideband DDC, Virtex-7
FPGA - AMC

Options:

-073	XC7VX330T-2 FPGA
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to front panel connector

Contact Pentek for availability of rugged and conduction-cooled versions

> on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer coupling into a Texas Instruments ADC12D1800 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The ADC12D1800 provides a programmable 15-bit gain adjustment allowing the 56741 to have a full scale input range of +2 dBm to +4 dBm. A built-in AutoSync feature supports A/D synchronization across multiple boardss.

The A/D digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other board resources.

Clocking and Synchronization

The 56741 accepts a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel μ Sync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The μ Sync bus includes gate, reset, and in and out reference clock signals. Two 56741's can be synchronized with a simple cable. For larger systems, multiple 56741's can be synchronized using the Model 5692 highspeed sync board to drive the sync bus.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors

mode: 150 MHz to 1.8 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 1.75 GHz; dual-channel mode: 2.8 GHz Full Scale Input: +2 dBm to +4 dBm, programmable **Digital Downconverters** Modes: One or two channels, programmable Supported Sample Rate: One-channel mode: 3.6 GHz, two-channel mode: 1.8 GHz Decimation Range: One-channel mode: 8x, 16x or 32x, two-channel mode: 4x, 8x. or 16x LO Tuning Freq. Resolution: 32 bits, 0 to f_s LO SFDR: >120 dB Phase Offset Resolution: 32 bits, 0 to 360 degrees FIR Filter: User-programmable 18-bit coefficients Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation Sample Clock Source: Front panel SSMC connector Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML **External Trigger Input** Type: Front panel female SSMC connector, LVTTL Function: Programmable functions include: trigger, gate, sync and PPS Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2 Custom I/O Option -104: Installs a front panel connector with 24 LVDS pairs to the FPGA Memory Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR) **PCI-Express Interface** PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 AMC Interface Type: AMC.1 Module Management: IPMI Version 2.0 Environmental **Operating Temp:** 0° to 50° C Storage Temp: –20° to 90° C **Relative Humidity:** 0 to 95%, non-cond. Size: Single-width, full-height AMC module, 2.89 in. x 7.11 in.

Features

- 32 bits of LVDS digital I/O
- One LVDS clock
- One LVDS data valid
- One LVDS data suspend
- Supports LXT and SXT Virtex-6 FPGAS
- DMA controller moves data to and from system memory
- Up to 2 GB of DDR3 SDRAM
- PCI Express interface
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O to the carrier board

General Information

Model 71610 is a member of the Cobalt[®] family of high-performance XMC modules based on the Xilinx Virtex-6 FPGA. This digital I/O module provides 32 LVDS differential inputs or outputs plus LVDS clock, data valid, and data flow control on a front panel 80-pin connector. Its built-in data capture and data generation feature offers an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

In addition to supporting PCI Express Gen. 1 as a native interface, the Model 71610 includes a general-purpose connector for application-specific I/O.

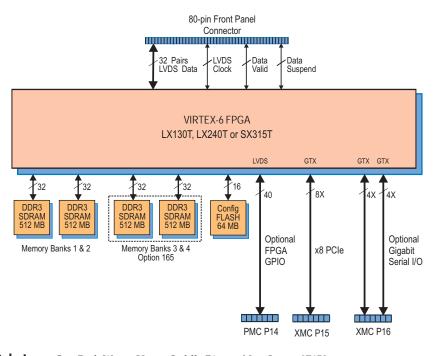
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions for data flow and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an IP (intellectual property) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's interface. The 71610 factory-installed functions include 32-bit acquisition and generation IP modules, to support either input or output functions, respectively.

IP modules for DDR3 SDRAM memories, a controller for all data clocking, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 71610 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T LX240T, or SX315T. The SXT part features up to 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs the P14 PMC connector with 20 pairs of LVDS connections to the FPGA for custom I/O to the carrier board.

Option -105 installs the P16 XMC connector with one 8X or two 4X gigabit links to the FPGA to support serial protocols.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model Description

71610	LVDS Digital I/O with Virtex-6 FPGA - XMC
Options:	
-062	XC6VLX240T

-064	XC6VSX315T
-104	LVDS FPGA I/O through P14 connector
-105	Gigabit serial FPGA I/O through P16 connector
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

* This option is always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

► Acquisition IP Module

The module can be configured for digital input mode by setting a jumper on the board. In this case, the module accepts input data Clock and input Data Valid signals. This supports a continuous input Clock with data accepted only when the Data Valid line is true. The module can optionally generate a Data Suspend output signal indicating that the 71610 is no longer capable of accepting data. The module accepts 32 bits from the front panel connector or from an on-board test signal generator.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. Memory banks are supported with DMA engines for easily moving input data through the PCIe interface.

Generation IP Module

The module can be configured for digital output mode by setting a jumper on the board. In this case, the module generates output data Clock and output Data Valid signals. This supports a continuous output Clock with data valid only when the Data Valid line is true. The module can optionally accept a Data Suspend input signal to halt data generation when the destination device is no longer capable of accepting data.

A linked-list controller allows users to generate 32-bit digital words out through the front panel LVDS connector from tables stored in either on-board or off-board host memory. Parameters including length of table, delay from software trigger, table repetition, etc. can be programmed for entry. Up to 64 individual link entries can be chained together to create complex output patterns with minimum programming.

XMC Interface

The Model 71610 complies with the VITA 42.0 XMC specification. Each of two connectors provides multilane gigabit serial interfaces with up to a 6 GHz bit clock. With dual XMC connectors, the 71610 supports x4 or x8 PCIe on the primary P15 XMC connector. The secondary P16 XMC connector is used for dual 4X or single 8X user-installed gigabit serial interfaces, such as Aurora, PCIe and serial RapidIO.

PCI Express Interface

The Model 71610 includes an industrystandard interface fully compliant with PCI Express Gen. 1 bus specifications. Supporting a PCIe x4 or x8 connection, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Memory Resources

The 71610 hardware architecture supports up to four independent 512 MB memory banks of DDR3 SDRAM. The board is always configured with 1 GB of memory (Banks 1 and 2).

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. For customers who need more memory to support their IP, Banks 3 and 4 can be optionally added for a total of 2 GB of DDR3 SDRAM

Specifications

Front Panel Input/Output

Data Lines: 35 LVDS differential pairs (32 pairs supported in factory-installed functions), 2.5 V compliant

Clock: One LVDS differential pair, 2.5 V compliant

Data Valid: One LVDS differential pair, 2.5 V compliant

Data Suspend: One LVDS differential pair, 2.5 V compliant

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T, or XC6VSX315T

Custom I/O

Option -104: Installs the PMC P14 connector with 20 LVDS pairs to the FPGA **Option -105:** Installs the XMC P16 connector configurable as one 8X or two 4X gigabit serial links to the FPGA **Memory**

Standard: Two 512 MB DDR3 SDRAM memory banks (1 and 2), 400 MHz DDR Option 165: Two 512 MB DDR3 SDRAM memory banks (3 and 4), 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8 **Environmental**

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C **Relative Humidity:** 0 to 95%, non-cond.

Size: Standard XMC module, 2.91 in. x 5.87 in.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Features

- 32 bits of LVDS digital I/O
- One LVDS clock
- One LVDS data valid
- One LVDS data suspend
- Supports LXT and SXT Virtex-6 FPGAS
- DMA controller moves data to and from system memory
- Up to 2 GB of DDR3 SDRAM
- PCI Express interface
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O to the carrier board

General Information

Model 78610 is a member of the Cobalt[®] family of high-performance PCIe boards based on the Xilinx Virtex-6 FPGA. This digital I/O board provides 32 LVDS differential inputs or outputs plus LVDS clock, data valid, and data flow control on a front panel 80-pin connector. Its built-in data capture and data generation feature offers an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

In addition to supporting PCI Express Gen. 1 as a native interface, the Model 78610 includes a general-purpose connector for application-specific I/O.

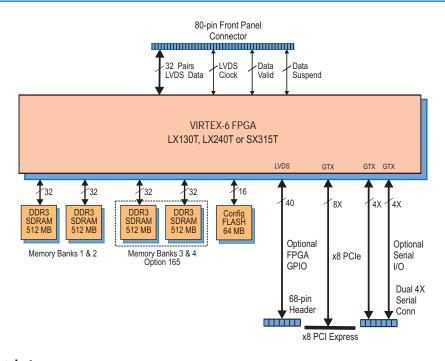
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions for data flow and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an IP (intellectual property) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's interface. The 78610 factory-installed functions include 32-bit acquisition and generation IP modules, to support either input or output functions, respectively.

IP modules for DDR3 SDRAM memories, a controller for all data clocking, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 78610 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T LX240T, or SX315T. The SXT part features up to 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105 connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board. >

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model Description

78610	LVDS Digital I/O with
	Virtex-6 FPGA - PCIe

Options:

-	
-062	XC6VLX240T
-064	XC6VSX315T
-104	LVDS FPGA I/O through 68-pin ribbon cable connector
-105	Gigabit serial FPGA I/O through two 4X top edge connectors
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
* This and	ion is always required

* This option is always required

Model Description

8266 PC Development System See 8266 Datasheet for Options

► Acquisition IP Module

The board can be configured for digital input mode by the setting of a jumper. In this case, the board accepts input data Clock and input data Valid signals. This supports a continuous input Clock with data accepted only when the Data Valid line is true. The board can optionally generate a Data Suspend output signal indicating that the 78610 is no longer capable of accepting data. The board accepts 32 bits from the front panel connector or from an on-board test signal generator.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. Memory banks are supported with DMA engines for easily moving input data through the PCIe interface.

Generation IP Module

The board can be configured for digital output mode by the setting of a jumper. In this case, the board generates output data Clock and output Data Valid signals. This supports a continuous output Clock with data valid only when the Data Valid line is true. The board can optionally accept a Data Suspend input signal to halt data generation when the destination device is no longer capable of accepting data.

A linked-list controller allows users to generate 32-bit digital words out through the front panel LVDS connector from tables stored in either on-board or off-board host memory. Parameters including length of table, delay from software trigger, table repetition, etc. can be programmed for entry. Up to 64 individual link entries can be chained together to create complex output patterns with minimum programming.

PCI Express Interface

The Model 78610 includes an industrystandard interface fully compliant with PCI Express Gen. 1 bus specifications. Supporting a PCIe x4 or x8 connection, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Memory Resources

The 78610 hardware architecture supports up to four independent 512 MB memory banks of DDR3 SDRAM. The board is always configured with 1 GB of memory (Banks 1 and 2).

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. For customers who need more memory to support their IP, Banks 3 and 4 can be optionally added for a total of 2 GB of DDR3 SDRAM

Specifications

Front Panel Input/Output

Data Lines: 35 LVDS differential pairs (32 pairs supported in factory-installed functions), 2.5 V compliant **Clock:** One LVDS differential pair,

2.5 V compliant

Data Valid: One LVDS differential pair, 2.5 V compliant

Data Suspend: One LVDS differential pair, 2.5 V compliant

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T

Optional: Xilinx Virtex-6 XC6VLX240T, or XC6VSX315T

Custom I/O

Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105: Connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board

Memory

Standard: Two 512 MB DDR3 SDRAM memory banks (1 and 2), 400 MHz DDR Option 165: Two 512 MB DDR3 SDRAM memory banks (3 and 4), 400 MHz DDR PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8

Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Half-length PCIe card, 4.38 in. x 7.13 in.

www.pentek.com

Model 52610 COTS (left) and rugged version

Features

- 32 bits of LVDS digital I/O
- One LVDS clock
- One LVDS data valid
- One LVDS data suspend
- Supports LXT and SXT Virtex-6 FPGAS
- DMA controller moves data to and from system memory
- Up to 2 GB of DDR3 SDRAM
- PCI Express interface
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O to the carrier board
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 53610 is a member of the Cobalt[®] family of high-performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. This digital I/O board provides 32 LVDS differential inputs or outputs plus LVDS clock, data valid, and data flow control on a front panel 80-pin connector. Its built-in data capture and data generation feature offers an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

In addition to supporting PCI Express Gen. 1 as a native interface, the Model 53610 includes a general-purpose connector for application-specific I/O.

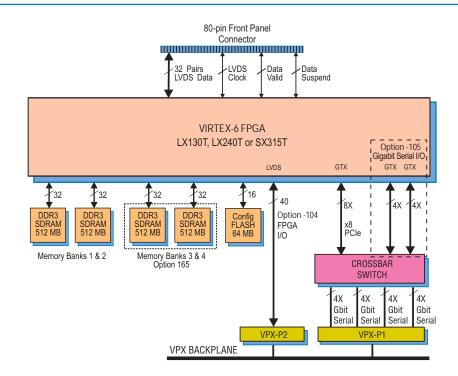
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions for data flow and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an IP (intellectual property) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's interface. The 53610 factory-installed functions include 32-bit acquisition and generation IP modules, to support either input or output functions, respectively.

IP modules for DDR3 SDRAM memories, a controller for all data clocking, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 53610 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T LX240T, or SX315T. The SXT part features up to 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols.

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201·818·5900 & Fax: 201·818·5904 & Email: info@pentek.com

Fabric-Transparent Crossbar Switch

The 53610 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency. Programmable signal input equalization and output preemphasis settings enable optimization. Data paths can be selected as single (1X) lanes, or groups of four lanes (4X).

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model Description

53610	LVDS Digital I/O with
	Virtex-6 FPGA - 3U VPX
Options:	
-062	XC6VLX240T
-064	XC6VSX315T
-104	IVDS EPGA I/O to VPX

-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3

SDRAM Memory Banks (Banks 3 and 4) * This option is always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System See 8267 Datasheet for Options

► Acquisition IP Module

The board can be configured for digital input mode by the setting of a jumper. In this case, the board accepts input data Clock and input data Valid signals. This supports a continuous input Clock with data accepted only when the Data Valid line is true. The board can optionally generate a Data Suspend output signal indicating that the 53610 is no longer capable of accepting data. The board accepts 32 bits from the front panel connector or from an on-board test signal generator.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. Memory banks are supported with DMA engines for easily moving input data through the PCIe interface.

Generation IP Module

The board can be configured for digital output mode by the setting of a jumper. In this case, the board generates output data Clock and output Data Valid signals. This supports a continuous output Clock with data valid only when the Data Valid line is true. The board can optionally accept a Data Suspend input signal to halt data generation when the destination device is no longer capable of accepting data.

A linked-list controller allows users to generate 32-bit digital words out through the front panel LVDS connector from tables stored in either on-board or off-board host memory. Parameters including length of table, delay from software trigger, table repetition, etc. can be programmed for entry. Up to 64 individual link entries can be chained together to create complex output patterns with minimum programming.

PCI Express Interface

The Model 53610 includes an industrystandard interface fully compliant with PCI Express Gen. 1 bus specifications. Supporting a PCIe x4 or x8 connection, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Memory Resources

The 53610 hardware architecture supports up to four independent 512 MB memory banks of DDR3 SDRAM. The board is always configured with 1 GB of memory (Banks 1 and 2).

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. For customers who need more memory to support their IP, Banks 3 and 4 can be optionally added for a total of 2 GB of DDR3 SDRAM

Specifications

Front Panel Input/Output

Data Lines: 35 LVDS differential pairs (32 pairs supported in factory-installed functions), 2.5 V compliant **Clock:** One LVDS differential pair, 2.5 V

compliant

Data Valid: One LVDS differential pair, 2.5 V compliant

Data Suspend: One LVDS differential pair, 2.5 V compliant

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T, or XC6VSX315T

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O. **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols.

Memory

Standard: Two 512 MB DDR3 SDRAM memory banks (1 and 2), 400 MHz DDR Option 165: Two 512 MB DDR3 SDRAM memory banks (3 and 4), 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8 **Environmental**

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 52xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	····,	
	52xxx	53xxx
Form Factor	3U V	VPX
# of XMCs	One	XMC
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs on VPX P2	
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458

Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Model 52610 COTS (left) and rugged version

Features

- 32 bits of LVDS digital I/O
- One LVDS clock
- One LVDS data valid
- One LVDS data suspend
- Supports LXT and SXT Virtex-6 FPGAS
- DMA controller moves data to and from system memory
- Up to 2 GB of DDR3 SDRAM
- PCI Express interface
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O to the carrier board
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 52610 is a member of the Cobalt[®] family of high-performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. This digital I/O board provides 32 LVDS differential inputs or outputs plus LVDS clock, data valid, and data flow control on a front panel 80-pin connector. Its built-in data capture and data generation feature offers an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

In addition to supporting PCI Express Gen. 1 as a native interface, the Model 52610 includes a general-purpose connector for application-specific I/O.

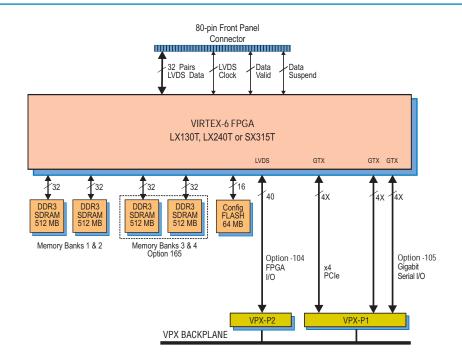
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions for data flow and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an IP (intellectual property) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's interface. The 52610 factory-installed functions include 32-bit acquisition and generation IP modules, to support either input or output functions, respectively.

IP modules for DDR3 SDRAM memories, a controller for all data clocking, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 52610 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T LX240T, or SX315T. The SXT part features up to 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -105 provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. >

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201-818-5900 Fax: 201-818-5904 Email: info@pentek.com

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt and Onyx VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model Description

52610	LVDS Digital I/O with	
	Virtex-6 FPGA - 3U VPX	

Options:

-062 -064	XC6VLX240T XC6VSX315T
-104	LVDS FPGA I/O to VPX P2
-105	Gigabit serial FPGA I/O to VPX P1
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

* This option is always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System See 8267 Datasheet for Options

► Acquisition IP Module

The board can be configured for digital input mode by the setting of a jumper. In this case, the board accepts input data Clock and input data Valid signals. This supports a continuous input Clock with data accepted only when the Data Valid line is true. The board can optionally generate a Data Suspend output signal indicating that the 52610 is no longer capable of accepting data. The board accepts 32 bits from the front panel connector or from an on-board test signal generator.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. Memory banks are supported with DMA engines for easily moving input data through the PCIe interface.

Generation IP Module

The board can be configured for digital output mode by the setting of a jumper. In this case, the board generates output data Clock and output Data Valid signals. This supports a continuous output Clock with data valid only when the Data Valid line is true. The board can optionally accept a Data Suspend input signal to halt data generation when the destination device is no longer capable of accepting data.

A linked-list controller allows users to generate 32-bit digital words out through the front panel LVDS connector from tables stored in either on-board or off-board host memory. Parameters including length of table, delay from software trigger, table repetition, etc. can be programmed for entry. Up to 64 individual link entries can be chained together to create complex output patterns with minimum programming.

PCI Express Interface

The Model 52610 includes an industrystandard interface fully compliant with PCI Express Gen. 1 bus specifications. Supporting a PCIe x4 connection, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Memory Resources

The 52610 hardware architecture supports up to four independent 512 MB memory banks of DDR3 SDRAM. The board is always configured with 1 GB of memory (Banks 1 and 2).

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. For customers who need more memory to support their IP, Banks 3 and 4 can be optionally added for a total of 2 GB of DDR3 SDRAM

Specifications

Front Panel Input/Output

Data Lines: 35 LVDS differential pairs (32 pairs supported in factory-installed functions), 2.5 V compliant **Clock:** One LVDS differential pair, 2.5 V

compliant

Data Valid: One LVDS differential pair, 2.5 V compliant

Data Suspend: One LVDS differential pair, 2.5 V compliant

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T

Optional: Xilinx Virtex-6 XC6VLX240T, or XC6VSX315T

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O. **Option -105:** Provides one 8X or two 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols.

Memory

Standard: Two 512 MB DDR3 SDRAM memory banks (1 and 2), 400 MHz DDR Option 165: Two 512 MB DDR3 SDRAM memory banks (3 and 4), 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1: x4 **Environmental**

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

VPX Family Comparison

	52xxx	53xxx
Form Factor	3U VPX	
# of XMCs	One XMC	
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs on VPX P2	
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Pentek, Inc. One Park Way • Upper Saddle River • New Jersey 07458

Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Models 57610 and 58610

Single or Dual LVDS Digital I/O with Virtex-6 FPGA - 6U OpenVPX

Model 58610

Features

- 32 or 64 bits of LVDS digital I/O
- One or two LVDS clocks
- One or two LVDS data valid
- One or two LVDS data suspend
- Supports LXT and SXT Virtex-6 FPGAS
- One or two DMA controllers move data to and from system memory
- Up to 2 or 4 GB of DDR3
- PCI Express (Gen. 1 & 2) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O to the carrier board
- Ruggedized and conductioncooled versions available

General Information

Models 57610 and 58610 are members of the Cobalt[®] family of high-performance 6U OpenVPX boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71610 XMC modules mounted on a VPX carrier board.

Model 57610 is a 6U board with one Model 71610 module while the Model 58610 is a 6U board with two XMC modules rather than one.

These models include one or two general-purpose connectors for applicationspecific I/O.

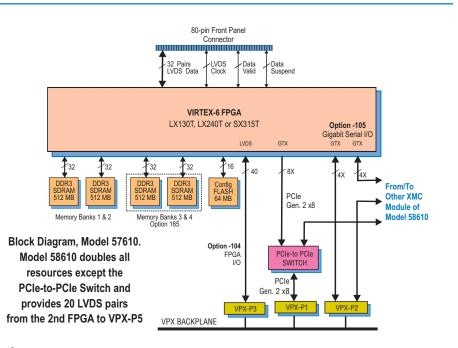
The Cobalt Architecture

The Pentek Cobalt Architecture features Virtex-6 FPGAs. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions for data flow and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an IP (intellectual property) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's interface. The factory-installed functions of these models include 32-bit acquisition and generation IP modules, to support either input or output functions, respectively.

IP modules for DDR3 SDRAM memories, controllers for all data clocking, test signal generators, and a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T LX240T, or SX315T. The SXT part features up to 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57610; P3 and P5, Model 58610.

Option -105 supports serial protocalls by providing a 4X gigabit link between the FPGA and VPX P2, Model 57610; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58610. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

Single or Dual LVDS Digital I/O with Virtex-6 FPGA - 6U OpenVPX

Model 8264

The Model 8264 is a fullyintegrated development system for Pentek Cobalt and Onyx 6U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model Description

- 57610 Single LVDS Digital I/O with Virtex-6 FPGA -6U VPX
 58610 Dual LVDS Digital I/O
- with two Virtex-6 FPGAs -6U VPX

Options:

-062	XC6VLX240T
-064	XC6VSX315T
-104	LVDS I/O between the FPGA and P3 connector, Model 57610; P3 and P5 connectors, Model 58610
-105	Gigabit link between the FPGA and P2 connector, Model 57610; gigabit links from each FPGA to P2 connector, Model 78610
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)

-165 Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

* This option is always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8264	VPX Development System. See 8264 Datasheet for Options

► Acquisition IP Modules

These models can be configured for digital input mode by the setting of one or two jumpers. In this case, the board accepts input data Clock and input data Valid signals. This supports a continuous input Clock with data accepted only when the Data Valid line is true. The board can optionally generate a Data Suspend output signal indicating that these models are no longer capable of accepting data. The board accepts 32 bits from the front panel connector or from an on-board test signal generator.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. Memory banks are supported with DMA engines for easily moving input data through the PCIe interface.

Generation IP Modules

These models can be configured for digital output mode by the setting of one or two jumpers. In this case, the board generates output data Clock and output Data Valid signals. This supports a continuous output Clock with data valid only when the Data Valid line is true. The board can optionally accept a Data Suspend input signal to halt data generation when the destination device is no longer capable of accepting data.

One or two linked-list controllers allow users to generate 32-bit digital words out through the front panel LVDS connector from tables stored in either on-board or off-board host memory. Parameters including length of table, delay from software trigger, table repetition, etc. can be programmed for entry. Up to 64 or 128 individual link entries can be chained together to create complex output patterns with minimum programming.

PCI Express Interface

These models include an industrystandard interface fully compliant with PCI Express Gen. 1 and 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Memory Resources

The hardware architecture supports up to four or eight independent 512 MB memory banks of DDR3 SDRAM. The board is always configured with 1 GB of memory (Banks 1 and 2).

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. For customers who need more memory to support their IP, Banks 3 and 4 can be optionally added for a total of 4 GB.

Specifications

Model 57610: Single LVDS Digital I/O Model 58610: Dual LVDS Digital I/O Front Panel Input/Output (1 or 2)

Data Lines: 35 LVDS differential pairs (32 pairs supported in factory-installed functions), 2.5 V compliant **Clock:** One LVDS differential pair, 2.5 V

compliant

Data Valid: One LVDS differential pair, 2.5 V compliant

Data Suspend: One LVDS differential pair, 2.5 V compliant

Field Programmable Gate Array (1 or 2) Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T, or XC6VSX315T

Custom I/O

Option -104: Provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57610; P3 and P5, Model 58610

Option -105: Supports serial protocols by providing a 4X gigabit link between the FPGA and VPX P2, Model 57610; or one 4X link from each FPGA to P2 and an additional 4X link between the FPGAs, Model 58610

Memory Banks (1 or 2)

Standard: Two 512 MB DDR3 SDRAM memory banks (1 and 2), 400 MHz DDR Option 165: Two 512 MB DDR3 SDRAM memory banks (3 and 4), 400 MHz DDR

PCI Express Interface

PCI Express Bus: Gen. 1 or 2: x4 or x8 Environmental: Level L1 & L2 air-cooled; Level L3 ruggedized, conduction-cooled Size: 3.937 in. x6.717 in. (100 mm x 170.6 mm)

www.pentek.com

Models 72610, 73610 and 74610

Model 74610 Model 73610

General Information

Models 72610, 73610 and 74610 are members of the Cobalt® family of high-performance CompactPCI boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71610 XMC modules mounted on a cPCI carrier board.

Model 72610 is a 6U cPCI board while the Model 73610 is a 3U cPCI board; both are equipped with one Model 71610 XMC. Model 74610 is a 6U cPCI board with two XMC modules rather than one.

These models include one or two general-purpose connectors for application-specific I/O.

The Cobalt Architecture

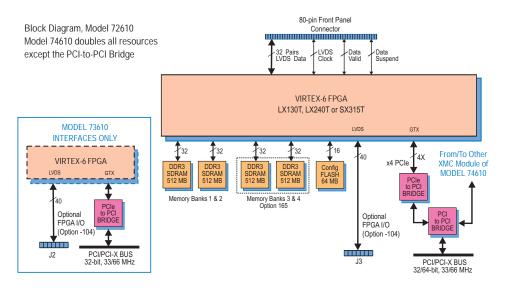
The Pentek Cobalt Architecture features Virtex-6 FPGAs. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions for data flow and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an IP (intellectual property) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's interface. The factory-installed functions of these models include 32-bit acquisition and generation IP modules, to support either input or output functions, respectively.

IP modules for DDR3 SDRAM memories, controllers for all data clocking, a test signal generator, and a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.


Xilinx Virtex-6 FPGA

The Virtex-6 FPGA can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T LX240T, or SX315T. The SXT part features up to 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73610; J3 connector, Model 72610; J3 and J5 connectors, Model 74610. >

Features

- 32 or 64 bits of LVDS digital I/O
- One or two LVDS clocks
- One or two LVDS data valid
- One or two LVDS data suspend
- Supports LXT and SXT Virtex-6 FPGAS
- One or two DMA controllers move data to and from system memory
- Up to 2 or 4 GB of DDR3 SDRAM
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O to the carrier board

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201.818.5900

Fax: 201.818.5904

Email: info@pentek.com

www.pentek.com

► Acquisition IP Module

These models can be configured for digital input mode by the setting of a jumper. In this case, the board accepts input data Clock and input data Valid signals. This supports a continuous input Clock with data accepted only when the Data Valid line is true. The board can optionally generate a Data Suspend output signal indicating that these models are no longer capable of accepting data. The board accepts 32 bits from the front panel connector or from an on-board test signal generator.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. Memory banks are supported with DMA engines for easily moving input data through the PCIe interface.

Generation IP Module

These models can be configured for digital output mode by the setting of a jumper. In this case, the board generates output data Clock and output Data Valid signals. This supports a continuous output Clock with data valid only when the Data Valid line is true. The board can optionally accept a Data Suspend input signal to halt data generation when the destination device is no longer capable of accepting data.

A linked-list controller allows users to generate 32-bit digital words out through the front panel LVDS connector from tables stored in either on-board or off-board host memory. Parameters including length of table, delay from software trigger, table repetition, etc. can be programmed for entry. Up to 64 individual link entries can be chained together to create complex output patterns with minimum programming.

PCI-X Interface

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported. Model 73610: 32 bits only.

Memory Resources

The hardware architecture supports up to four or eight independent 512 MB memory banks of DDR3 SDRAM. The board is always configured with 1 GB of memory (Banks 1 and 2).

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. For customers who need more memory to support their IP, Banks 3 and 4 can be optionally added for a total of 2 GB of DDR3 SDRAM for Models 72610 and 73610 or a total of 4 GB for Model 74610.

Specifications

Model 72610 or Model 73610: Single LVDS Digital I/O

Model 74610: Dual LVDS Digital I/O Front Panel Input/Output (1 or 2)

Data Lines: 35 LVDS differential pairs (32 pairs supported in factory-installed functions), 2.5 V compliant **Clock:** One LVDS differential pair, 2.5 V

compliant **Data Valid:** One LVDS differential pair, 2.5 V compliant

Data Suspend: One LVDS differential pair, 2.5 V compliant

Field Programmable Gate Array (1 or 2) Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T, or XC6VSX315T

Custom I/O

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73610; J3 connector, Model 72610; J3 and J5 connectors, Model 74610

Memory Banks (1 or 2) Standard: Two 512 MB DDR3 SDRAM memory banks (1 and 2), 400 MHz DDR Option 165: Two 512 MB DDR3 SDRAM memory banks (3 and 4), 400 MHz DDR

PCI-X Interface

PCI-X Bus: 32 or 64 bits at 33 or 66 MHz Model 73610: 32 bits only

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C **Relative Humidity:** 0 to 95%, non-cond. **Size:** Standard 6U or 3U cPCI board

Ordering Information

Model Description

- Single LVDS Digital I/O 72610 with Virtex-6 FPGA -6U cPCI Single LVDS Digital I/O 73610 with Virtex-6 FPGA -3U cPCI Dual LVDS Digital I/O 74610 with Virtex-6 FPGAs -6U cPCI **Options:** XC6VLX240T -062 -064 XC6VSX315T -104 LVDS I/O between the FPGA and J2 connector, Model 73610; J3 connector, Model 72610; J3 and J5 connectors, Model 74610 -155* Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2) -165 Two 512 MB DDR3
- SDRAM Memory Banks (Banks 3 and 4)

* This option is always required

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

General Information

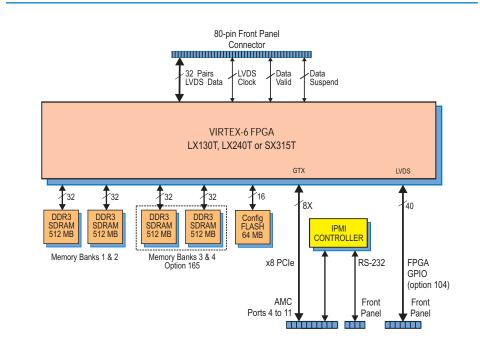
Model 56610 is a member of the Cobalt[®] family of high-performance AMC boards based on the Xilinx Virtex-6 FPGA. This digital I/O board provides 32 LVDS differential inputs or outputs plus LVDS clock, data valid, and data flow control on a front panel 80-pin connector. Its built-in data capture and data generation feature offers an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

In addition to supporting PCI Express Gen. 1 as a native interface, the Model 56610 includes a general-purpose connector for application-specific I/O.

The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions for data flow and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an IP (intellectual property) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's interface. The 56610 factory-installed functions include 32-bit acquisition and generation IP modules, to support either input or output functions, respectively. IP modules for DDR3 SDRAM memories, a controller for all data clocking, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 56610 to operate as a complete turnkey solution without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T LX240T, or SX315T. The SXT part features up to 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs a front panel connector with 20 pairs of LVDS connections to the FPGA for custom I/O. >

Features

- 32 bits of LVDS digital I/O
- One LVDS clock
- One LVDS data valid
- One LVDS data suspend
- Supports LXT and SXT Virtex-6 FPGAS
- DMA controller moves data to and from system memory
- Up to 2 GB of DDR3 SDRAM
- PCI Express interface
- AMC.1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O to the carrier board

PENTEK

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

► Acquisition IP Module

The board can be configured for digital input mode by the setting of a jumper. In this case, the board accepts input data Clock and input data Valid signals. This supports a continuous input Clock with data accepted only when the Data Valid line is true. The board can optionally generate a Data Suspend output signal indicating that the 56610 is no longer capable of accepting data. The board accepts 32 bits from the front panel connector or from an on-board test signal generator.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. Memory banks are supported with DMA engines for easily moving input data through the PCIe interface.

Generation IP Module

The board can be configured for digital output mode by the setting of a jumper. In this case, the board generates output data Clock and output Data Valid signals. This supports a continuous output Clock with data valid only when the Data Valid line is true. The board can optionally accept a Data Suspend input signal to halt data generation when the destination device is no longer capable of accepting data.

A linked-list controller allows users to generate 32-bit digital words out through the front panel LVDS connector from tables stored in either on-board or off-board host memory. Parameters including length of table, delay from software trigger, table repetition, etc. can be programmed for entry. Up to 64 individual link entries can be chained together to create complex output patterns with minimum programming.

AMC Interface

The Model 56610 complies with the AMC.1 specification by providing an x8 PCIe connection to AdvancedTCA carriers or μ TCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller).

PCI Express Interface

The Model 56610 includes an industrystandard interface fully compliant with PCI Express Gen. 1 bus specifications. Supporting a PCIe x4 or x8 connection, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Memory Resources

The 56610 hardware architecture supports up to four independent 512 MB memory banks of DDR3 SDRAM. The board is always configured with 1 GB of memory (Banks 1 and 2).

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes. For customers who need more memory to support their IP, Banks 3 and 4 can be optionally added for a total of 2 GB of DDR3 SDRAM

Specifications

Front Panel Input/Output

Data Lines: 35 LVDS differential pairs (32 pairs supported in factory-installed functions), 2.5 V compliant

Clock: One LVDS differential pair, 2.5 V compliant

Data Valid: One LVDS differential pair, 2.5 V compliant

Data Suspend: One LVDS differential pair, 2.5 V compliant

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T, or XC6VSX315T

Custom I/O

Option -104: Installs a front panel connector with 20 LVDS pairs to the FPGA

Memory

Standard: Two 512 MB DDR3 SDRAM memory banks (1 and 2), 400 MHz DDR Option 165: Two 512 MB DDR3 SDRAM memory banks (3 and 4), 400 MHz DDR

AMC Interface

Type: AMC.1

Module Management: IPMI Version 2.0 PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8 **Environmental**

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C **Relative Humidity:** 0 to 95%, non-cond.

Size: Single-width, full-height AMC module, 2.89 in. x 7.11 in.

Ordering Information

Model Description		
56610	LVDS Digital I/O with Virtex-6 FPGA - PCIe	
Options:		
-062	XC6VLX240T	
-064	XC6VSX315T	
-104	LVDS FPGA I/O through 68-pin ribbon cable connector	
-105	Gigabit serial FPGA I/O through two 4X top edge connectors	
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)	
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)	

* This option is always required

Contact Pentek for availability of rugged and conduction-cooled versions

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

General Information

Model 7811 is a member of the Cobalt[®] family of high performance XMC modules based on the Xilinx Virtex-6 FPGA. A multichannel, gigabit serial interface, it is ideal for interfacing to Serial FPDP data converter boards or as a chassis-to-chassis data link.

The 7811 is fully compatible with the VITA 17.1 Serial FPDP specification. Its built-in data transfer features make it a complete turnkey solution. For users who require application-specific functions, the 7811 serves as a flexible platform for developing and deploying custom FPGA processing IP.

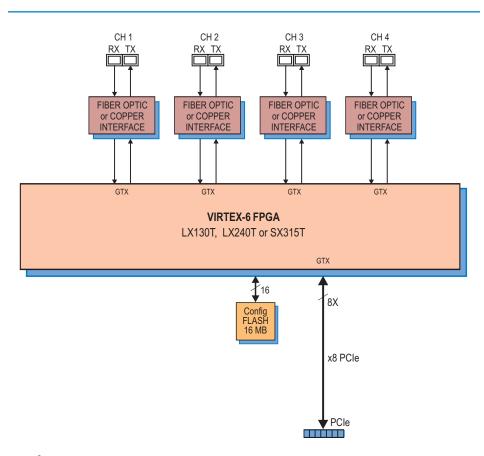
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data transfer and control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

IP modules for data routing and flow control, CRC support, advanced DMA engines, and a PCIe interface complete the factory-installed functions and enable the 7811 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.


Xilinx Virtex-6 FPGA

The Virtex-6 FPGA can be populated with two different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T or SX315T. The SX315T part features 1,344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/ decryption, and channelization of the signals between transmission and reception.

For applications not requiring large DSP resources, the lower-cost LX130T FPGA can be installed. >

Features

- Complete Serial FPDP solution
- Fully compliant with VITA 17.1specification
- Fibre optic or copper serial interfaces
- PCI Express interface up to x8

Pentek, Inc. One Park Way

Upper Saddle River
New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904

Email: info@pentek.com

Serial FPDP Interface

The 7811 is fully compatible with the VITA 17.1 Serial FPDP specification. With the capability to support 1.0625, 2.125, 2.5, 3.125, and 4.25 Gbaud link rates and the option for multi-mode and single-mode optical interfaces or copper interfaces the board can work in virtually any system. Programmable modes include: flow control in both receive and transmit directions, CRC support, and copy/loop modes.

PCI Express Interface

The Model 7811 includes an industrystandard interface fully compliant with PCI Express bus specifications. Supporting PCIe links up to x8, the interface includes eight DMA controllers. Each of the four Serial FPDP channels includes dedicated DMA engines for transmit and receive for efficient transfers to and from the board.

Specifications

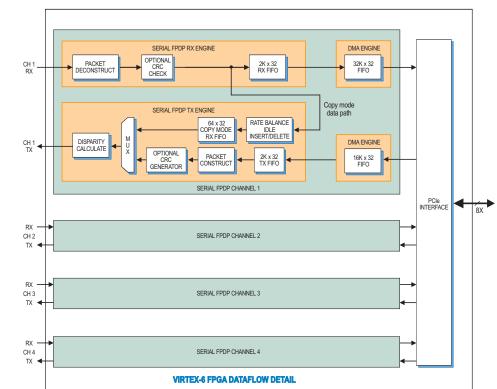
Front Panel Serial FPDP Inputs/Outputs Number of Connectors: 4 Fiber Optic Connector Type: LC Laser: 850 nm (standard, other options available) Copper Connector Type: SFP+

Fiber Optic or Copper Link Rates: 1.0625, 2.125, 2.5, 3.125 or 4.25 Gbaud (copper rate depends on cable langth) Fiber Optic or Copper Data Transfer Rates: 105, 210, 247, 309 or 420 MB/sec (depending on link rate) per serial FPDP port

Field Programmable Gate Array Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T

PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8 Environmental


Operating Temp: 0° to 50° C Storage Temp: –20° to 90° C Relative Humidity: 0 to 95%, non-cond.

Size: Half-length PCIe card, 4.38 in. x 7.13 in. 🗲

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Description
Quad Serial FPDP Interface with Virtex-6 FPGA - PCIe

Model	Description
-281	Multi-mode optical serial interfaces
-280	Copper serial interfaces
-064	XC6VSX315T FPGA
-062	XC6VLX240T FPGA

8266 PC Development System See 8266 Datasheet for Options

Pentek, Inc. One Park Way
 Upper Saddle River
 New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

General Information

Model 71611 is a member of the Cobalt[®] family of high performance XMC modules based on the Xilinx Virtex-6 FPGA. A multichannel, gigabit serial interface, it is ideal for interfacing to Serial FPDP data converter boards or as a chassis-to-chassis data link.

The 71611 is fully compatible with the VITA 17.1 Serial FPDP specification. Its built-in data transfer features make it a complete turnkey solution. For users who require application-specific functions, the 71611 serves as a flexible platform for developing and deploying custom FPGA processing IP.

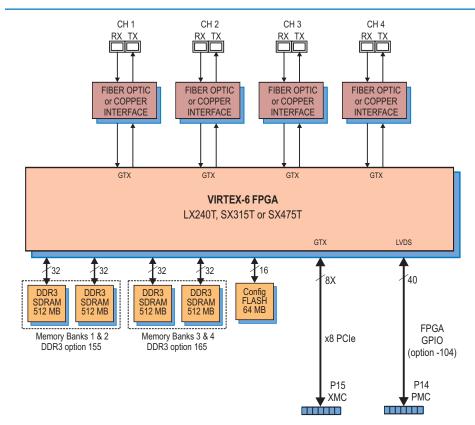
In addition to supporting PCI Express as a native interface, the Model 71611 includes a general purpose connector for applicationspecific I/O.

The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data transfer and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

IP modules for DDR3 SDRAM memories, controllers for data routing and flow control,

CRC support, advanced DMA engines, and a PCIe interface complete the factory-installed functions and enable the 71611 to operate as a complete turnkey solution without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow[®] FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX240T, SX315T, or SX475T. The SXT parts feature up to 2016 DSP48E slices and are ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, the lowercost LXT FPGA can be installed.

Option -104 installs the P14 PMC connector with 20 pairs of LVDS connections to the FPGA for custom I/O. ►

Features

- Complete Serial FPDP solution
- Fully compliant with VITA 17.1 specification
- Fiber optic or copper serial interfaces
- Up to 2 GB of DDR3 SDRAM
- PCI Express interface up to x8
- LVDS connections to the Virtex-6 FPGA for custom I/O

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
71611	Quad Serial FPDP Interface with Virtex-6 FPGA - XMC

Options:

-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-065	XC6VSX475T FPGA
-104	LVDS FPGA I/O through P14 connector
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
-280	Copper serial interfaces
-281	Multi-mode optical serial interfaces
Contact Pentek for availability	

contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

► Serial FPDP Interface

The 71611 is fully compatible with the VITA 17.1 Serial FPDP specification. With the capability to support 1.0625, 2.125, 2.5, 3.125, and 4.25 Gbaud link rates and the option for multi-mode and single-mode optical interfaces, the board can work in virtually any system. Programmable modes include: flow control in both receive and transmit directions, CRC support, and copy/loop modes.

Memory Resources

The 71611 architecture supports up to four independent memory banks of DDR3 SDRAM. Each memory is 512 MB deep and an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 71611 includes an industrystandard interface fully compliant with PCI Express Gen. 1 bus specifications. Supporting PCIe links up to x8, the interface includes eight DMA controllers. Each of the four Serial FPDP channels includes dedicated DMA engines for transmit and receive for efficient transfers to and from the module.

Specifications

- Front Panel Serial FPDP Inputs/Outputs Number of Connectors: 4
 - Fiber Optic Connector Type: LC Laser: 850 nm (standard, other options available)

Copper Connector Type: Micro Twinax Fiber Optic or Copper Link Rates: 1.0625, 2.125, 2.5, 3.125 or 4.25 Gbaud (copper rate depends on cable langth) Fiber Optic or Copper Data Transfer Rates: 105, 210, 247, 309 or 420 MB/sec (depending on link rate) per serial FPDP port

Field Programmable Gate Array: Xilinx Virtex-6 XC6VLX240T, XC6VSX315T, or XC6VSX475T

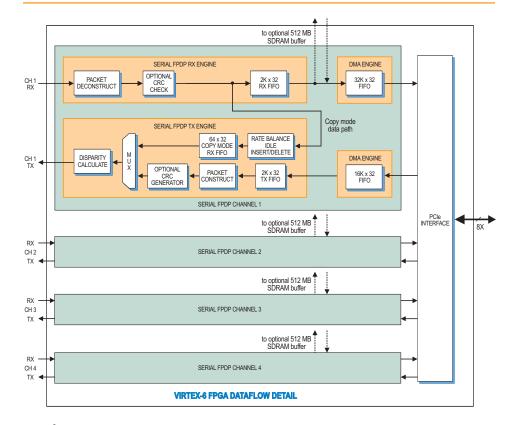
Custom I/O

Option -104: Installs the PMC P14 connector with 20 LVDS pairs to the FPGA

Memory

Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR **PCI-Express Interface**

PCI Express Bus: Gen. 1: x4 or x8


Environmental

Operating Temp: 0° to 50° C

Storage Temp: –20° to 90° C

Relative Humidity: 0 to 95%, non-cond.

Size: Standard XMC module, 2.91 in. x 5.87 in. ►

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

General Information

Model 78611 is a member of the Cobalt[®] family of high performance PCIe boards based on the Xilinx Virtex-6 FPGA. A multichannel, gigabit serial interface, it is ideal for interfacing to Serial FPDP data converter boards or as a chassis-to-chassis data link.

The 78611 is fully compatible with the VITA 17.1 Serial FPDP specification. Its built-in data transfer features make it a complete turnkey solution. For users who require application-specific functions, the 78611 serves as a flexible platform for developing and deploying custom FPGA processing IP.

In addition to supporting PCI Express as a native interface, the Model 78611 includes a general purpose connector for applicationspecific I/O.

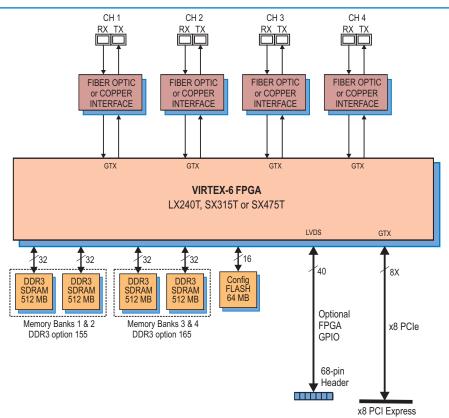
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data transfer and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

IP modules for DDR3 SDRAM memories, controllers for data routing and flow control, CRC support, advanced DMA engines, and a PCIe interface complete the factory-installed functions and enable the 78611 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.


Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX240T, SX315T, or SX475T. The SXT parts feature up to 2016 DSP48E slices and are ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, the lowercost LXT FPGA can be installed.

Option -104 connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O. >

Features

- Complete Serial FPDP solution
- Fully compliant with VITA 17.1 specification
- Fiber optic or copper serial interfaces
- Up to 2 GB of DDR3 SDRAM
- PCI Express interface up to x8
- LVDS connections to the Virtex-6 FPGA for custom I/O

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201·818·5900 & Fax: 201·818·5904 & Email: info@pentek.com

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

► Serial FPDP Interface

The 78611 is fully compatible with the VITA 17.1 Serial FPDP specification. With the capability to support 1.0625, 2.125, 2.5, 3.125, and 4.25 Gbaud link rates and the option for multi-mode and single-mode optical interfaces, the board can work in virtually any system. Programmable modes include: flow control in both receive and transmit directions, CRC support, and copy/loop modes.

Memory Resources

The 78611 architecture supports up to four independent memory banks of DDR3 SDRAM. Each memory is 512 MB deep and an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 78611 includes an industrystandard interface fully compliant with PCI Express Gen. 1 bus specifications. Supporting PCIe links up to x8, the interface includes eight DMA controllers. Each of the four Serial FPDP channels includes dedicated DMA engines for transmit and receive for efficient transfers to and from the board.

Specifications

- Front Panel Serial FPDP Inputs/Outputs Number of Connectors: 4
 - Fiber Optic Connector Type: LC Laser: 850 nm (standard, other options available)

Copper Connector Type: Micro Twinax **Fiber Optic or Copper Link Rates:** 1.0625, 2.125, 2.5, 3.125 or 4.25 Gbaud (copper rate depends on cable langth) **Fiber Optic or Copper Data Transfer Rates:** 105, 210, 247, 309 or 420 MB/sec (depending on link rate) per serial FPDP port

Field Programmable Gate Array: Xilinx Virtex-6 XC6VLX240T, XC6VSX315T, or XC6VSX475T

Custom I/O

Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Memory

Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8 **Environmental**

Operating Temp: 0° to 50° C

Storage Temp: -20° to 90° C

Relative Humidity: 0 to 95%, non-cond.

Size: Half-length PCIe card, 4.38 in. x 7.13 in. ►

to optional 512 MB SDRAM buffer SERIAL FPDP RX ENGINE DMA ENGINE OPTIONA CRC CHECK PACKET DECONSTRUC 2K x 32 RX FIFO 32K x 32 FIFO CH 1 RX Copy mode data path SERIAL FPDP TX ENGINE RATE BALANCE 64 x 32 COPY MODE RX FIFO IDLE INSERT/DELETE DISPARITY CALCULATE DMA ENGINE CH 1 OPTIONAL CRC GENERATOR PACKET CONSTRUCT 2K x 32 TX FIFO 16K x 32 FIFO SERIAL FPDP CHANNEL 1 PCIe INTERFACE to optional 512 MB . 8X RX SERIAL EPDP CHANNEL 2 CH 2 ΤХ to optional 512 MB SDRAM buffer RY SERIAL FPDP CHANNEL 3 CH 3 ΤХ to optional 512 MB SDRAM buffer RX SERIAL FPDP CHANNEL 4 CH 4 **VIRTEX-6 FPGA DATAFLOW DETAIL**

Ordering Information

Model	Description
78611	Quad Serial FPDP Interface with Virtex-6 FPGA - PCIe
Options:	
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-065	XC6VSX475T FPGA
-104	LVDS FPGA I/O through 68-pin ribbon cable connector
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
-280	Copper serial interfaces
-281	Multi-mode optical serial interfaces
Model	Description
8266	PC Development System See 8266 Datasheet for

Options

Pentek, Inc. One Park Way & Upper Saddle River

New Jersey 07458
Tel: 201/818/5900

Fax: 201/818/5904

Email: info@pentek.com

General Information

Model 78611 is a member of the Cobalt[®] family of high performance PCIe boards based on the Xilinx Virtex-6 FPGA. A multichannel, gigabit serial interface, it is ideal for interfacing to Serial FPDP data converter boards or as a chassis-to-chassis data link.

The 78611 is fully compatible with the VITA 17.1 Serial FPDP specification. Its built-in data transfer features make it a complete turnkey solution. For users who require application-specific functions, the 78611 serves as a flexible platform for developing and deploying custom FPGA processing IP.

In addition to supporting PCI Express as a native interface, the Model 78611 includes a general purpose connector for applicationspecific I/O.

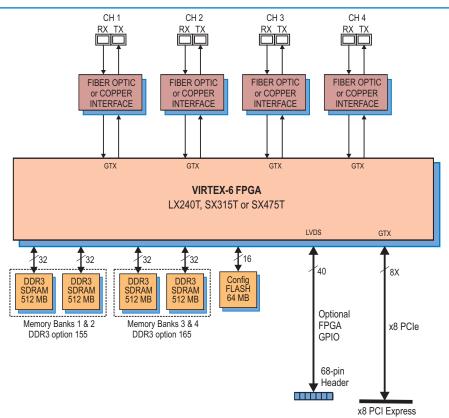
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data transfer and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

IP modules for DDR3 SDRAM memories, controllers for data routing and flow control, CRC support, advanced DMA engines, and a PCIe interface complete the factory-installed functions and enable the 78611 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.


Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX240T, SX315T, or SX475T. The SXT parts feature up to 2016 DSP48E slices and are ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, the lowercost LXT FPGA can be installed.

Option -104 connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O. >

Features

- Complete Serial FPDP solution
- Fully compliant with VITA 17.1 specification
- Fiber optic or copper serial interfaces
- Up to 2 GB of DDR3 SDRAM
- PCI Express interface up to x8
- LVDS connections to the Virtex-6 FPGA for custom I/O

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201·818·5900 & Fax: 201·818·5904 & Email: info@pentek.com

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

► Serial FPDP Interface

The 78611 is fully compatible with the VITA 17.1 Serial FPDP specification. With the capability to support 1.0625, 2.125, 2.5, 3.125, and 4.25 Gbaud link rates and the option for multi-mode and single-mode optical interfaces, the board can work in virtually any system. Programmable modes include: flow control in both receive and transmit directions, CRC support, and copy/loop modes.

Memory Resources

The 78611 architecture supports up to four independent memory banks of DDR3 SDRAM. Each memory is 512 MB deep and an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 78611 includes an industrystandard interface fully compliant with PCI Express Gen. 1 bus specifications. Supporting PCIe links up to x8, the interface includes eight DMA controllers. Each of the four Serial FPDP channels includes dedicated DMA engines for transmit and receive for efficient transfers to and from the board.

Specifications

- Front Panel Serial FPDP Inputs/Outputs Number of Connectors: 4
 - Fiber Optic Connector Type: LC Laser: 850 nm (standard, other options available)

Copper Connector Type: Micro Twinax **Fiber Optic or Copper Link Rates:** 1.0625, 2.125, 2.5, 3.125 or 4.25 Gbaud (copper rate depends on cable langth) **Fiber Optic or Copper Data Transfer Rates:** 105, 210, 247, 309 or 420 MB/sec (depending on link rate) per serial FPDP port

Field Programmable Gate Array: Xilinx Virtex-6 XC6VLX240T, XC6VSX315T, or XC6VSX475T

Custom I/O

Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Memory

Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8 **Environmental**

Operating Temp: 0° to 50° C

Storage Temp: -20° to 90° C

Relative Humidity: 0 to 95%, non-cond.

Size: Half-length PCIe card, 4.38 in. x 7.13 in. ►

to optional 512 MB SDRAM buffer SERIAL FPDP RX ENGINE DMA ENGINE OPTIONA CRC CHECK PACKET DECONSTRUC 2K x 32 RX FIFO 32K x 32 FIFO CH 1 RX Copy mode data path SERIAL FPDP TX ENGINE RATE BALANCE 64 x 32 COPY MODE RX FIFO IDLE INSERT/DELETE DISPARITY CALCULATE DMA ENGINE CH 1 OPTIONAL CRC GENERATOR PACKET CONSTRUCT 2K x 32 TX FIFO 16K x 32 FIFO SERIAL FPDP CHANNEL 1 PCIe INTERFACE to optional 512 MB . 8X RX SERIAL EPDP CHANNEL 2 CH 2 ΤХ to optional 512 MB SDRAM buffer RY SERIAL FPDP CHANNEL 3 CH 3 ΤХ to optional 512 MB SDRAM buffer RX SERIAL FPDP CHANNEL 4 CH 4 **VIRTEX-6 FPGA DATAFLOW DETAIL**

Ordering Information

Model	Description
78611	Quad Serial FPDP Interface with Virtex-6 FPGA - PCIe
Options:	
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-065	XC6VSX475T FPGA
-104	LVDS FPGA I/O through 68-pin ribbon cable connector
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
-280	Copper serial interfaces
-281	Multi-mode optical serial interfaces
Model	Description
8266	PC Development System See 8266 Datasheet for

Options

Pentek, Inc. One Park Way & Upper Saddle River

New Jersey 07458
Tel: 201/818/5900

Fax: 201/818/5904

Email: info@pentek.com

Model 53611 COTS (left) and rugged version

Features

- Complete Serial FPDP solution
- Fully compliant with VITA 17.1 specification
- Fiber optic or copper serial interfaces
- Up to 2 GB of DDR3 SDRAM
- PCI Express interface up to x8
- LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 53611 is a member of the Cobalt[®] family of high performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. A multichannel, gigabit serial interface, it is ideal for interfacing to Serial FPDP data converter boards or as a chassis-to-chassis data link.

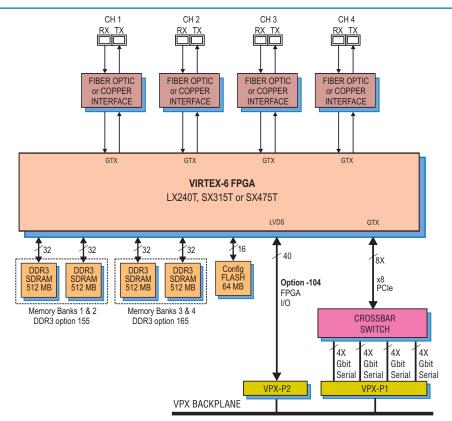
The 53611 is fully compatible with the VITA 17.1 Serial FPDP specification. Its built-in data transfer features make it a complete turnkey solution. For users who require application-specific functions, the 53611 serves as a flexible platform for developing and deploying custom FPGA processing IP.

In addition to supporting PCI Express over the 3U VPX backplane, the Model 53611 includes a general purpose connector for application-specific I/O.

The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data transfer and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

IP modules for DDR3 SDRAM memories, controllers for data routing and flow control, CRC support, advanced DMA engines, and a PCIe interface complete the factory-installed functions and enable the 53611 to operate as a complete turnkey solution without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX240T, SX315T, or SX475T. The SXT parts feature up to 2016 DSP48E slices and are ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, the lowercost LXT FPGA can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O. ►

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201·818·5900

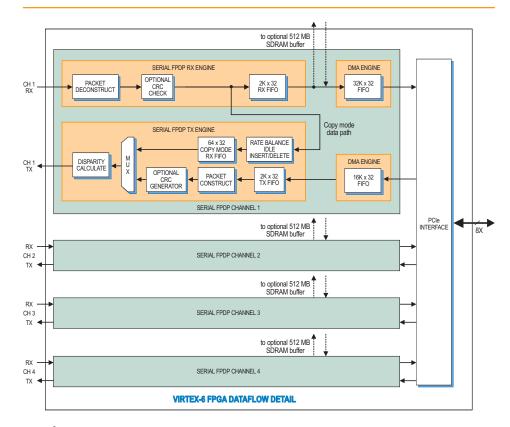
Fax: 201·818·5904

Email: info@pentek.com

► Serial FPDP Interface

The 53611 is fully compatible with the VITA 17.1 Serial FPDP specification. With the capability to support 1.0625, 2.125, 2.5, 3.125, and 4.25 Gbaud link rates and the option for multi-mode and single-mode optical interfaces, the board can work in virtually any system. Programmable modes include: flow control in both receive and transmit directions, CRC support, and copy/loop modes.

Memory Resources


The 53611 architecture supports up to four independent memory banks of DDR3 SDRAM. Each memory is 512 MB deep and an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

PCI Express Interface

The Model 53611 includes an industrystandard interface fully compliant with PCI Express Gen. 1 bus specifications. Supporting PCIe links up to x8, the interface includes eight DMA controllers. Each of the four Serial FPDP channels includes dedicated DMA engines for transmit and receive for efficient transfers to and from the board.

Crossbar Switch

The 53611 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency. Programmable signal input equalization and output pre-emphasis settings enable optimization. Data paths can be selected as single (1X) lanes, or groups of four lanes (4X).

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Specifications

- Front Panel Serial FPDP Inputs/Outputs Number of Connectors: 4
 - **Fiber Optic Connector Type:** LC **Laser:** 850 nm (standard, other options available)

Copper Connector Type: Micro Twinax **Fiber Optic or Copper Link Rates:** 1.0625, 2.125, 2.5, 3.125 or 4.25 Gbaud (copper rate depends on cable langth) **Fiber Optic or Copper Data Transfer Rates:** 105, 210, 247, 309 or 420 MB/sec (depending on link rate) per serial FPDP port

Field Programmable Gate Array: Xilinx Virtex-6 XC6VLX240T, XC6VSX315T, or XC6VSX475T

Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O

Memory

Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8

Environmental Operating Temp: 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 53xxx and the 52xxx. For more information on a 52xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

	VPX Family Comparison	
	52xxx	53xxx
Form Factor	3U V	VPX
# of XMCs	One XMC	
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs on VPX P2	
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Model 8267

The Model 8267 is a fullyintegrated development system for Pentek Cobalt, Onyx and Flexor 3U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
53611	Quad Serial FPDP Interface with Virtex-6
	FPGA - 3U VPX

Options:

-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-065	XC6VSX475T FPGA

- -104 LVDS FPGA I/O to VPX P2
- -155 Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)

-165	Two 512 MB DDR3
	SDRAM Memory Banks
	(Banks 3 and 4)

-280 Copper serial interfaces -281 Multi-mode optical serial interfaces

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System See 8267 Datasheet for Options

Model 52611 COTS (left) and rugged version

Features

- Complete Serial FPDP solution
- Fully compliant with VITA 17.1 specification
- Fiber optic or copper serial interfaces
- Up to 2 GB of DDR3 SDRAM
- PCI Express interface up to x4
- LVDS connections to the Virtex-6 FPGA for custom I/O
- 3U VPX form factor provides a compact, rugged platform
- Compatible with several VITA standards including: *VITA-46, VITA-48 and VITA-65 (OpenVPX™ System Specification)*
- Ruggedized and conductioncooled versions available

General Information

Model 52611 is a member of the Cobalt[®] family of high performance 3U VPX boards based on the Xilinx Virtex-6 FPGA. A multichannel, gigabit serial interface, it is ideal for interfacing to Serial FPDP data converter boards or as a chassis-to-chassis data link.

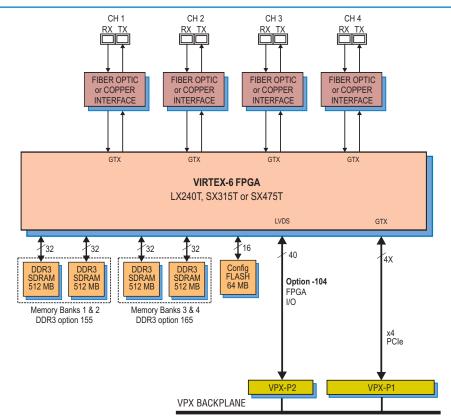
The 52611 is fully compatible with the VITA 17.1 Serial FPDP specification. Its built-in data transfer features make it a complete turnkey solution. For users who require application-specific functions, the 52611 serves as a flexible platform for developing and deploying custom FPGA processing IP.

In addition to supporting PCI Express over the 3U VPX backplane, the Model 52611 includes a general-purpose connector for application-specific I/O.

The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data transfer and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

IP modules for DDR3 SDRAM memories, controllers for data routing and flow control, CRC support, advanced DMA engines, and a PCIe interface complete the factory-installed functions and enable the 52611 to operate as a complete turnkey solution without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX240T, SX315T, or SX475T. The SXT parts feature up to 2016 DSP48E slices and are ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, the lowercost LXT FPGA can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O. ►

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

PCI Express Interface

The Model 52611 includes an industry-standard interface fully compliant with PCI Express Gen. 1 bus specifications. Supporting PCIe links up to x4, the interface includes eight DMA controllers. Each of the four Serial FPDP channels includes dedicated DMA engines for transmit and receive for efficient transfers to and from the board.

Model 8267

The Model 8267 is a fullyintegrated development system for Pentek Cobalt, Onyx and Flexor 3U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Ordering Information		
Model	Description	
52611	Quad Serial FPDP Interface with Virtex-6 FPGA - 3U VPX	
Options:	:	
-062	XC6VLX240T FPGA	
-064	XC6VSX315T FPGA	
-065	XC6VSX475T FPGA	
-104	LVDS FPGA I/O to VPX P2	
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)	
-165	Two 512 MB DDR3 SDRAM Memory Banks	

	(Banks 3 and 4)
-280	Copper serial interfaces
-281	Multi-mode optical serial
	interfaces

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System See 8267 Datasheet for Options

► Serial FPDP Interface

The 52611 is fully compatible with the VITA 17.1 Serial FPDP specification. With the capability to support 1.0625, 2.125, 2.5, 3.125, and 4.25 Gbaud link rates and the option for multi-mode and single-mode optical interfaces, the board can work in virtually any system. Programmable modes include: flow control in both receive and transmit directions, CRC support, and copy/loop modes.

Memory Resources

The 52611 architecture supports up to four independent memory banks of DDR3 SDRAM. Each memory is 512 MB deep and an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

Specifications

Front Panel Serial FPDP Inputs/Outputs Number of Connectors: 4 Fiber Optic Connector Type: LC

Laser: 850 nm (standard, other options available) Copper Connector Type: Micro Twinax

Fiber Optic or Copper Link Rates: 1.0625, 2.125, 2.5, 3.125 or 4.25 Gbaud (copper rate depends on cable langth) **Fiber Optic or Copper Data Transfer Rates:** 105, 210, 247, 309 or 420 MB/sec (depending on link rate) per serial FPDP port

Field Programmable Gate Array: Xilinx Virtex-6 XC6VLX240T, XC6VSX315T, or XC6VSX475T

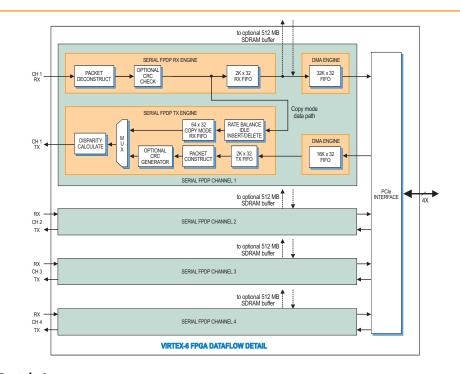
Custom I/O

Option -104: Provides 20 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O

Memory

Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface


PCI Express Bus: Gen. 1: x4 Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C **Relative Humidity:** 0 to 95%, non-cond. **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their main features.

	VPX Family Comparison	
	52xxx	53xxx
Form Factor	3U V	VPX
# of XMCs	One XMC	
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs on VPX P2	
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201.818.5900
Fax: 201.818.5904
Email: info@pentek.com

Models 57611 and 58611

Model 58611

Quad or Octal Serial FPDP Interface with Virtex-6 FPGA - 6U OpenVPX

General Information

Models 57611 and 58611 are members of the Cobalt[®] family of high performance 6U OpenVPX boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71611 XMC modules mounted on a VPX carrier board.

Model 57611 is a 6U board with one Model 71611 module while the Model 58611 is a 6U board with two XMC modules rather than one.

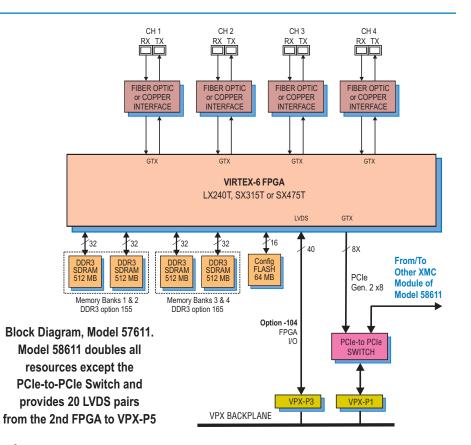
These models are fully compatible with the VITA 17.1 Serial FPDP specification. Their built-in data transfer features make them complete turnkey solutions. For users who require application-specific functions, they serve as flexible platforms for developing and deploying custom FPGA processing IP.

The Cobalt Architecture

The Pentek Cobalt Architecture features one or two Virtex-6 FPGAs. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data transfer and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

IP modules for DDR3 SDRAM memories, controllers for data routing and flow control, CRC support, advanced DMA engines, and

a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX240T, SX315T, or SX475T. The SXT parts feature up to 2016 DSP48E slices and are ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, the lowercost LXT FPGA can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57611; P3 and P5, Model 58611. >

Features

- Four or eight channels of Serial FPDP interface
- Fully compliant with VITA 17.1 specification
- Fiber optic or copper serial interfaces
- One or two Virtex-6 FPGAs
- Up to 2 or 4 GB of DDR3 SDRAM
- PCI Express interface up to x8
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O
- Ruggedized and conductioncooled versions available

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

Quad or Octal Serial FPDP Interface with Virtex-6 FPGA - 6U OpenVPX

Model 8264

The Model 8264 is a fullyintegrated development system for Pentek Cobalt and Onyx 6U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

ModelDescription57611Quad Serial FPDP
Interface with Virtex-6
FPGA - 6U VPX58611Octal Serial FPDP
Interface with two
Virtex-6 FPGAs - 6U VPXOptions:-062

001	
-064	XC6VSX315T FPGA
-065	XC6VSX475T FPGA
-104	LVDS I/O between the FPGA and P3 connector, Model 57611; P3 and P5 connectors, Model 58611
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
-280	Copper serial interfaces
-281	Multi-mode optical serial interfaces

Contact Pentek for availability of rugged and conduction-cooled versions

 Model
 Description

 8264
 VPX Development System. See 8264 Datasheet for Options

► Serial FPDP Interface

These models are fully compatible with the VITA 17.1 Serial FPDP specification. With the capability to support 1.0625, 2.125, 2.5, 3.125, and 4.25 Gbaud link rates and the option for multi-mode and single-mode optical interfaces, the boards can work in virtually any system. Programmable modes include: flow control in both receive and transmit directions, CRC support, and copy/loop modes.

Memory Resources

The architecture supports up to four or eight independent memory banks of DDR3 SDRAM. Each memory is 512 MB deep and an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

These models include an industrystandard interface fully compliant with PCI Express Gen. 1 and 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

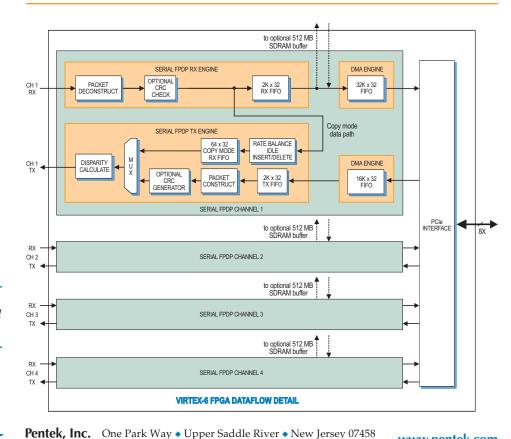
Specifications

- Front Panel Serial FPDP Inputs/Outputs Number of Connectors: 4 or 8
 - Fiber Optic Connector Type: LC Laser: 850 nm (standard, other options available)

Copper Connector Type: Micro Twinax Fiber Optic or Copper Link Rates: 1.0625, 2.125, 2.5, 3.125 or 4.25 Gbaud (copper rate depends on cable langth) Fiber Optic or Copper Data Transfer Rates: 105, 210, 247, 309 or 420 MB/sec (depending on link rate) per serial FPDP port

Field Programmable Gate Arrays: Xilinx Virtex-6 XC6VLX240T, XC6VSX315T, or XC6VSX475T

Custom I/O


Option -104: Provides 20 LVDS pairs between the FPGA and the VPX P3 connector, Model 57611; P3 and P5, Model 58611

Memory

Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR PCI Express Interface

PCI Express Bus: Gen. 1 or 2: x4 or x8 **Environmental:** Level L1 & L2 air-cooled;

Level L3 ruggedized, conduction-cooled **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm) >

One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201.8185900

Fax: 201.8185904

Email: info@pentek.com

Models 72611, 73611 and 74611

Model 74611 Model 73611

Features

- Four or eight channels of Serial FPDP interface
- Fully compliant with VITA 17.1 specification
- Fiber optic or copper serial interfaces
- One or two Virtex-6 FPGAs
- Up to 2 or 4 GB of DDR3 SDRAM
- LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Models 72611, 73611 and 74611 are members of the Cobalt[®] family of highperformance CompactPCI boards based on the Xilinx Virtex-6 FPGA. They consist of one or two Model 71611 XMC modules mounted on a cPCI carrier board.

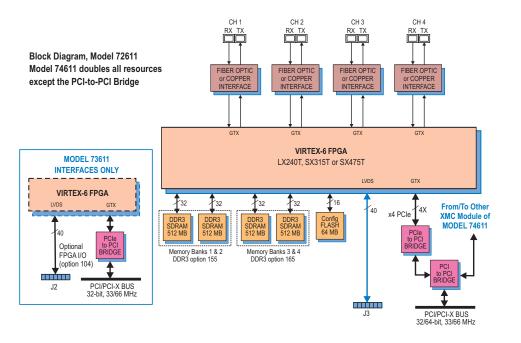
Model 72611 is a 6U cPCI board while the Model 73611 is a 3U cPCI board; both are equipped with one Model 71611 XMC. Model 74611 is a 6U cPCI board with two XMC modules rather than one.

These models are fully compatible with the VITA 17.1 Serial FPDP specification. Their built-in data transfer features make them complete turnkey solutions. For users who require application-specific functions, they serve as flexible platforms for developing and deploying custom FPGA processing IP.

The Cobalt Architecture

The Pentek Cobalt Architecture features one or two Virtex-6 FPGAs. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data transfer and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

IP modules for DDR3 SDRAM memories, controllers for data routing and flow control, CRC support, advanced DMA engines, and a cPCI interface complete the factory-installed functions and enable these models to operate as a complete turnkey solutions without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX240T, SX315T, or SX475T. The SXT parts feature up to 2016 DSP48E slices and are ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, the lowercost LXT FPGA can be installed.

Option -104 provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73611; J3 connector, Model 72611; J3 and J5 connectors, Model 74611. >

► Serial FPDP Interface

These models are fully compatible with the VITA 17.1 Serial FPDP specification. With the capability to support 1.0625, 2.125, 2.5, 3.125, and 4.25 Gbaud link rates and the option for multi-mode and single-mode optical interfaces, the boards can work in virtually any system. Programmable modes include: flow control in both receive and transmit directions, CRC support, and copy/loop modes.

Memory Resources

The architecture supports up to four or eight independent memory banks of DDR3 SDRAM. Each memory is 512 MB deep and an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI-X Interface

These models include an industry-standard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits (32 bits only, Model 73611) and data rates of 33 and 66 MHz are supported.

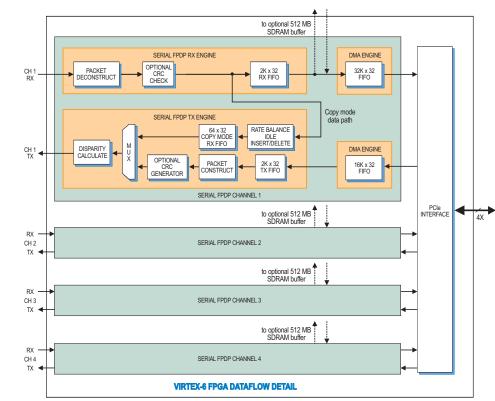
Specifications

- Front Panel Serial FPDP Inputs/Outputs Number of Connectors: 4 or 8 Fiber Optic Connector Type: LC
 - Laser: 850 nm (standard, other options available)

Copper Connector Type: Micro Twinax Fiber Optic or Copper Link Rates: 1.0625, 2.125, 2.5, 3.125 or 4.25 Gbaud (copper rate depends on cable langth) Fiber Optic or Copper Data Transfer Rates: 105, 210, 247, 309 or 420 MB/sec (depending on link rate) per serial FPDP port

Field Programmable Gate Array: Xilinx Virtex-6 XC6VLX240T, XC6VSX315T, or XC6VSX475T

Custom I/O


Option -104: provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73611; J3 connector, Model 72611; J3 and J5 connectors, Model 74611

Memory

Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR PCI-X Interface

PCI-X Bus: 32- or 64-bit at 33 or 66 MHz Model 73611: 32-bit at 33 or 66 MHz Environmental

Operating Temp: 0° to 50° C Storage Temp: −20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: Standard 6U or 3U cPCI board ➤

Ordering Information

Model	Description
72611	Quad Serial FPDP Interface with Virtex-6 FPGA - 6U cPCI
73611	Quad Serial FPDP Interface with Virtex-6 FPGA - 3U cPCI
74611	Octal Serial FPDP Interface with Virtex-6 FPGA - 6U cPCI
Options:	
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-065	XC6VSX475T FPGA
-104	LVDS I/O between the FPGA and J2 connector Model 73611; J3 connector, Model 72611 J3 and J5 connectors, Model 74611
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
-280	Copper serial interfaces
001	

-281 Multi-mode optical serial interfaces

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201\818\5900 Fax: 201\818\5904 Email: info@pentek.com

General Information

Model 56611 is a member of the Cobalt[®] family of high-performance AMC modules based on the Xilinx Virtex-6 FPGA. A multichannel, gigabit serial interface, it is ideal for interfacing to Serial FPDP data converter boards or as a chassis-to-chassis data link.

The 56611 is fully compatible with the VITA 17.1 Serial FPDP specification. Its built-in data transfer features make it a complete turnkey solution. For users who require application-specific functions, the 56611 serves as a flexible platform for developing and deploying custom FPGA processing IP. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 56611 includes a front panel general-purpose connector for application-specific I/O.

The Cobalt Architecture

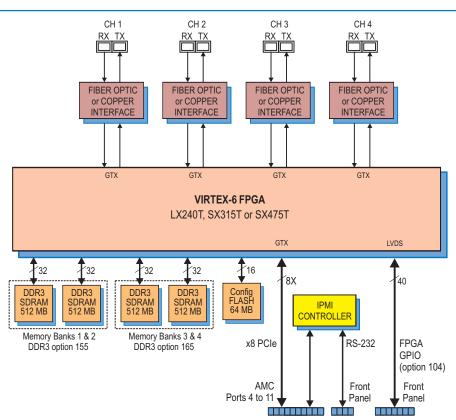
The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data transfer and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

IP modules for DDR3 SDRAM memories, controllers for data routing and flow control,

CRC support, advanced DMA engines, and a PCIe interface complete the factory-installed functions and enable the 56611 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.


Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX240T, SX315T, or SX475T. The SXT parts feature up to 2016 DSP48E slices and are ideal for modulation/demodulation, encoding/ decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, the lowercost LXT FPGA can be installed.

Option -104 installs a front panel connector with 20 pairs of LVDS connections to the FPGA for custom I/O. >

- Complete Serial FPDP solution
- Fully compliant with VITA 17.1 specification
- Fiber optic or copper serial interfaces
- Up to 2 GB of DDR3 SDRAM
- PCI Express interface up to x8
- AMC.1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)
- Optional front panel LVDS connections to the Virtex-6 FPGA for custom I/O

Pentek, Inc. One Park Way

Upper Saddle River
New Jersey 07458
Tel: 201:818:5900

Fax: 201:818:5904

Email: info@pentek.com

AMC Interface

The Model 56611 complies with the AMC.1 specification by providing an x8 PCIe connection to AdvancedTCA carriers or µTCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller).

Ordering Information

0		
Model	Description	
56611	Quad Serial FPDP Interface with Virtex-6 FPGA - AMC	
· · ·		

Options:

-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-065	XC6VSX475T FPGA
-104	LVDS FPGA I/O through front panel connector
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)
-280	Copper serial interfaces
-281	Multi-mode optical serial interfaces

Contact Pentek for availability of rugged and conduction-cooled versions

Serial FPDP Interface

The 56611 is fully compatible with the VITA 17.1 Serial FPDP specification. With the capability to support 1.0625, 2.125, 2.5, 3.125, and 4.25 Gbaud link rates and the option for multi-mode and single-mode optical interfaces, the board can work in virtually any system. Programmable modes include: flow control in both receive and transmit directions, CRC support, and copy/loop modes.

Memory Resources

The 56611 architecture supports up to four independent memory banks of DDR3 SDRAM. Each memory is 512 MB deep and an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface

The Model 56611 includes an industrystandard interface fully compliant with PCI Express Gen. 1 bus specifications. Supporting PCIe links up to x8, the interface includes eight DMA controllers. Each of the four Serial FPDP channels includes dedicated DMA engines for transmit and receive for efficient transfers to and from the module.

Specifications

- Front Panel Serial FPDP Inputs/Outputs Number of Connectors: 4
 - Fiber Optic Connector Type: LC Laser: 850 nm (standard, other options available)

Copper Connector Type: Micro Twinax Fiber Optic or Copper Link Rates: 1.0625, 2.125, 2.5, 3.125 or 4.25 Gbaud (copper rate depends on cable langth) Fiber Optic or Copper Data Transfer Rates: 105, 210, 247, 309 or 420 MB/sec (depending on link rate) per serial FPDP port

Field Programmable Gate Array: Xilinx Virtex-6 XC6VLX240T, XC6VSX315T, or XC6VSX475T

Custom I/O

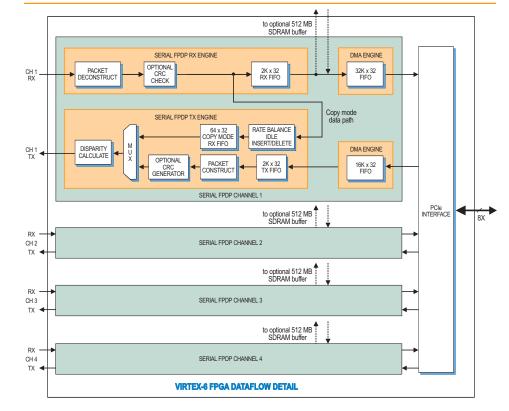
Option -104: Installs a front panel connector with 20 LVDS pairs to the FPGA

Memory

Option 155 or 165: Two 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1: x4 or x8 **AMC** Interface


Type: AMC.1

Module Management: IPMI Version 2.0 Environmental

Operating Temp: 0° to 50° C Storage Temp: -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. Size: Single-width, full-height AMC mod-

ule, 2.89 in. x 7.11 in. >

One Park Way
 Upper Saddle River
 New Jersey 07458 Pentek, Inc. Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

General Information

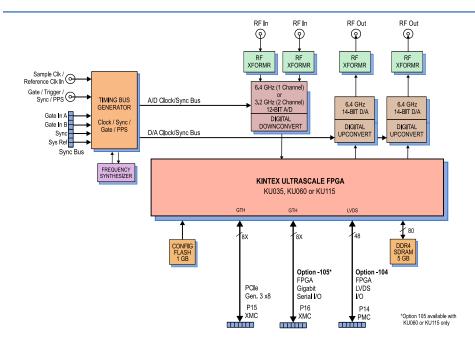
Model 71141 is a member of the Jade[™] family of high-performance XMC modules. The Jade architecture embodies a new streamlined approach to FPGA-based boards, simplifying the design to reduce power and cost, while still providing some of the highest-performance FPGA resources available today. Designed to work with Pentek's new Navigator[™] Design Suite of tools, the combination of Jade and Navigator offers users an efficient path to developing and deploying FPGA-based data acquisition and processing.

The 71141 is a high-speed analog-to-digital and digital-to-analog converter with programmable DDCs (digital downconverters) and DUCs (digital upconverters). It is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and generator features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

It includes a 6.4 GHz, 12-bit A/D converter, dual 6.4 GHz, 14-bit D/As and a large DDR4 memory. In addition to supporting PCI Express Gen. 3 as a native interface, Model 71141 includes optional high-bandwidth connections to the Kintex UltraScale FPGA for custom digital I/O.

The Jade Architecture

Evolved from the proven designs of the Pentek Cobalt and Onyx families, Jade raises the processing performance with the new flagship family of Kintex UltraScale FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factoryinstalled functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Jade architecture organizes the FPGA as a container for data-processing applications where each function exists as an intellectual property (IP) module.


Each member of the Jade family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 71141 factory-installed functions include two A/D acquisition and two D/A waveform generator IP modules. In addition, IP modules for DDR4 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 71141 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek Navigator FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the Navigator kit to completely replace the Pentek IP with their own.

Xilinx Kintex UltraScale FPGA

The Kintex UltraScale FPGA site can be populated with a range of FPGAs to match the specific requirements of the processing task, spanning the KU035 through KU115. The KU115 features 5520 DSP48E2 slices >

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Kintex UltraScale FPGAs
- One-channel mode with
 6.4 GHz, 12-bit A/D
- Two-channel mode with 3.2 GHz, 12-bit A/Ds
- Programmable DDCs (Digital Downconverters)
- Two 6.4 GHz, 14-bit D/As
- Programmable DUCs (Digital Upconverters)
- 5 GB of DDR4 SDRAM
- µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- VITA 42.0 XMC compatible with switched fabric interfaces
- Optional LVDS and gigabit serial connections to the FPGA for custom I/O
- Ruggedized and conductioncooled versions available

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201-818-5900

Fax: 201-818-5904

Email: info@pentek.com

A/D Acquisition IP Module

The 71141 features two A/D Acquisition IP Modules for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated a 5 GB DDR4 memory for buffering data in FIFO mode or for storing data in transient capture mode.

In single-channel mode, all of 5 GB are used to store the single-channel of input data. In dual-channel mode, one half of the memory stores data from input channel 1 and the other half stores data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory bank is supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Generator IP Module

The Model 71141 factory installed functions include a sophisticated D/A Waveform Generator IP module. It allows users to easily record to the dual D/As waveforms stored in either on-board memory or offboard host memory.

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - XMC

➤ and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, a lower-cost FPGA can be installed.

Option -104 installs the P14 PMC connector with 24 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with 8X gigabit link to the FPGA to support serial protocols.

A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer-coupling into a Texas Instruments ADC12DJ3200 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 6.4 GHz and an input bandwidth of 7.9 GHz; or, in dual-channel mode with a sampling rate of 3.2 GHz and input bandwidth of 8.1 GHz.

The A/D's built-in digital down-converters support 2x decimation in real output mode and 4x, 8x, or 16x decimation in complex output mode. The A/D digital outputs are delivered into the Kintex UltraScale FPGA for signal processing, data capture or for routing to other module resources.

Digital Upconverter and D/A Stage

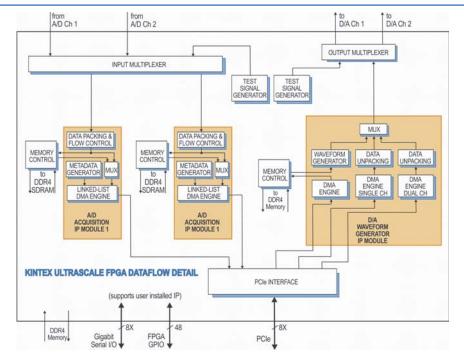
A TI DAC38RF82 DUC (digital upconverter) and D/A accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and dual D/A stages. When operating as a DUC, it interpolates and translates real or complex baseband input signals. It delivers real or quadrature (I+Q) analog outputs to the dual 14-bit D/A converter. Analog output is through a pair of front panel SSMC connectors.

If translation is disabled, the DAC38RF82 acts as a dual interpolating 14-bit D/A. In both modes the DAC38RF82 provides interpolation factors from 1x to 24x.

Memory Resources

The 71141 architecture supports a 5 GB bank of DDR4 SDRAM memory.

User-installed IP along with the Penteksupplied DDR4 controller core within the FPGA can take advantage of the memory for custom applications.


PCI Express Interface

The Model 71141 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Clocking and Synchronization

The 71141 accepts a sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel µSync bus connector allows multiple modules to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. The Model 7192 high-speed sync module can be used to drive the sync bus to synchronize multichannel systems. >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com **Development Systems**

The SPARK Development

Systems are fully-integrated

platforms for Pentek Cobalt,

Onyx, Jade and Flexor boards.

Available in a PC rackmount

(Model 8266), a 3U VPX chassis

(Model 8264), they were created

to save engineers and system

integrators the time and expense

associated with building and test-

ing a development system. Each

∂SPARK

Development Systems

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - XMC

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter Type: ADC12DJ3200 Sampling Rate: Single-channel mode: 6.4 GHz; dual-channel mode: 3.2 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 7.9 GHz; dual-channel mode: 8.1 GHz (Model 8267) or a 6U VPX chassis **D/A Converters** Type: Texas Instruments DAC38RF82 Output Sampling Rate: 6.4 GHz. **Resolution:** 14 bits Sample Clock Source: Front panel SSMC connector SPARK system is delivered with Timing Bus: 19-pin µSync bus connector the Pentek board(s) and required includes sync and gate/trigger inputs, software installed and equipped CML with sufficient cooling and power **External Trigger Input** to ensure optimum performance. Type: Front panel female SSMC connector, LVTTL. **Function:** Programmable functions include: trigger, gate, sync and PPS Field Programmable Gate Array Standard: Xilinx Kintex UltraScale XCKU035-2 Option -084: Xilinx Kintex UltraScale XCKU060-2

> Option -087: Xilinx Kintex UltraScale XCKU115-2

Custom I/O

Option -104: Installs the PMC P14 connector with 24 LVDS pairs to the FPGA Option -105 (only available with option -084 or -087): Installs the XMC P16 connector configurable as one 8X gigabit serial link to the FPGA

Memory

Type: DDR4 SDRAM Size: 5 GB

Speed: 1200 MHz (2400 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 Environmental

Standard: L0 (air cooled) **Operating Temp:** 0° to 50° C **Storage Temp:** –20° to 90° C Relative Humidity: 0 to 95%, noncondensing

- Option -702: L2 (air cooled) **Operating Temp:** –20° to 65° C **Storage Temp:** –40° to 100° C Relative Humidity: 0 to 95%, noncondensing
- Option -713: L3 (conduction cooled) **Operating Temp:** -40° to 70° C Storage Temp: –50° to 100° C Relative Humidity: 0 to 95%, noncondensing
- Size: XMC module 2.910 in x 5.870 in (74.00 mm x 149.00 mm)

Ordering Information

Model	Description
71141	1-Ch. 6.4 GHz or 2-Ch.
	3.2 GHz A/D, 2-Ch.
	6.4 GHz D/A, Kintex
	UltraScale FPGA - XMC

Options:

- 084 XCKU060-2 FPGA
- 087 XCKU115-2 FPGA
- 104 LVDS FPGA I/O through P14 connector
- Gigabit serial FPGA I/O - 105 through P16 connector
- 702 Air cooled, Level L2
- 713 Conduction-cooled, Level L3

Contact Pentek for complete specifications of rugged and conduction-cooled versions

Note: Not all combinations of sample rates, decimations and interpolations are available due to JESD204B and PCIe rate limitiations.

Model 78141

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - PCIe

General Information

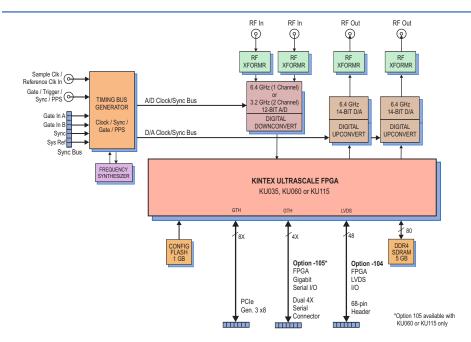
Model 78141 is a member of the Jade[™] family of high-performance PCIe boards. The Jade architecture embodies a new streamlined approach to FPGA-based boards, simplifying the design to reduce power and cost, while still providing some of the highest-performance FPGA resources available today. Designed to work with Pentek's new Navigator[™] Design Suite of tools, the combination of Jade and Navigator offers users an efficient path to developing and deploying FPGA-based data acquisition and processing.

The 78141 is a high-speed analog-to-digital and digital-to-analog converter with programmable DDCs (digital downconverters) and DUCs (digital upconverters). It is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and generator features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

It includes a 6.4 GHz, 12-bit A/D converter, dual 6.4 GHz, 14-bit D/As and a large DDR4 memory. In addition to supporting PCI Express Gen. 3 as a native interface, Model 78141 includes optional high-bandwidth connections to the Kintex UltraScale FPGA for custom digital I/O.

The Jade Architecture

Evolved from the proven designs of the Pentek Cobalt and Onyx families, Jade raises the processing performance with the new flagship family of Kintex UltraScale FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factoryinstalled functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Jade architecture organizes the FPGA as a container for data-processing applications where each function exists as an intellectual property (IP) module.


Each member of the Jade family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 78141 factory-installed functions include two A/D acquisition and two D/A waveform generator IP modules. In addition, IP modules for DDR4 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 78141 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek Navigator FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the Navigator kit to completely replace the Pentek IP with their own.

Xilinx Kintex UltraScale FPGA

The Kintex UltraScale FPGA site can be populated with a range of FPGAs to match the specific requirements of the processing task, spanning the KU035 through KU115. The KU115 features 5520 DSP48E2 slices >

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Kintex UltraScale FPGAs
- One-channel mode with 6.4 GHz, 12-bit A/D
- Two-channel mode with 3.2 GHz, 12-bit A/Ds
- Programmable DDCs (Digital Downconverters)
- Two 6.4 GHz, 14-bit D/As
- Programmable DUCs (Digital Upconverters)
- 5 GB of DDR4 SDRAM
- µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional LVDS and gigabit serial connections to the FPGA for custom I/O

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201.818:5900

Fax: 201.818:5904

Email: info@pentek.com

A/D Acquisition IP Module

The 78141 features two A/D Acquisition IP Modules for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated a 5 GB DDR4 memory for buffering data in FIFO mode or for storing data in transient capture mode.

In single-channel mode, all of 5 GB are used to store the single-channel of input data. In dual-channel mode, one half of the memory stores data from input channel 1 and the other half stores data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory bank is supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Generator IP Module

The Model 78141 factory installed functions include a sophisticated D/A Waveform Generator IP module. It allows users to easily record to the dual D/As waveforms stored in either on-board memory or offboard host memory.

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - PCIe

➤ and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, a lower-cost FPGA can be installed.

Option -104 installs 24 pairs of LVDS connections from the FPGA to a 68-pin header for custom I/O.

Option -105 provides one 8X gigabit link between the FPGA and a serial connector to support serial protocols.

A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer-coupling into a Texas Instruments ADC12DJ3200 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 6.4 GHz and an input bandwidth of 7.9 GHz; or, in dual-channel mode with a sampling rate of 3.2 GHz and input bandwidth of 8.1 GHz.

The A/D's built-in digital down-converters support 2x decimation in real output mode and 4x, 8x, or 16x decimation in complex output mode. The A/D digital outputs are delivered into the Kintex UltraScale FPGA for signal processing, data capture or for routing to other module resources.

Digital Upconverter and D/A Stage

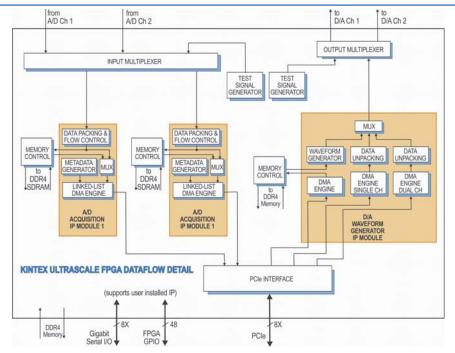
A TI DAC38RF82 DUC (digital upconverter) and D/A accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and dual D/A stages. When operating as a DUC, it interpolates and translates real or complex baseband input signals. It delivers real or quadrature (I+Q) analog outputs to the dual 14-bit D/A converter. Analog output is through a pair of front panel SSMC connectors.

If translation is disabled, the DAC38RF82 acts as a dual interpolating 14-bit D/A. In both modes the DAC38RF82 provides interpolation factors from 1x to 24x.

Memory Resources

The 78141 architecture supports a 5 GB bank of DDR4 SDRAM memory.

User-installed IP along with the Penteksupplied DDR4 controller core within the FPGA can take advantage of the memory for custom applications.


PCI Express Interface

The Model 78141 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Clocking and Synchronization

The 78141 accepts a sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel µSync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. The Model 7892 high- speed sync board can be used to drive the sync bus to synchronize multichannel systems. >

Pentek, Inc. One Park Way ♦ Upper Saddle River ♦ New Jersey 07458 Tel: 201.818:5900 ♦ Fax: 201.818:5904 ♦ Email: info@pentek.com

to support serial protocols.

Model 78141

Development Systems

The SPARK Development Systems are fully-integrated platforms for Pentek Cobalt, Onyx, Jade and Flexor boards. Available in a PC rackmount (Model 8266), a 3U VPX chassis (Model 8267) or a 6U VPX chassis (Model 8264), they were created to save engineers and system integrators the time and expense associated with building and testing a development system. Each SPARK system is delivered with the Pentek board(s) and required software installed and equipped with sufficient cooling and power to ensure optimum performance.

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - PCIe

> Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter Type: ADC12DJ3200 Sampling Rate: Single-channel mode: 6.4 GHz; dual-channel mode: 3.2 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 7.9 GHz; dual-channel mode: 8.1 GHz **D/A Converters** Type: Texas Instruments DAC38RF82 Output Sampling Rate: 6.4 GHz. **Resolution:** 14 bits Sample Clock Source: Front panel SSMC connector Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML **External Trigger Input** Type: Front panel female SSMC connector, LVTTL. **Function:** Programmable functions include: trigger, gate, sync and PPS Field Programmable Gate Array Standard: Xilinx Kintex UltraScale XCKU035-2

Option -084: Xilinx Kintex UltraScale XCKU060-2

Option -087: Xilinx Kintex UltraScale XCKU115-2

Custom I/O

Option -104: installs 24 pairs of LVDS connections from the FPGA to a 68-pin header for custom I/O **Option -105 (only available with op-tion -084 or -087):** provides one 8X gigabit link between the FPGA and a serial connector to support serial protocols

Memory

Type: DDR4 SDRAM **Size:** 5 GB

Speed: 1200 MHz (2400 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 **Environmental**

Standard: L0 (air cooled) Operating Temp: 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, noncondensing

Option -702: L2 (air cooled) Operating Temp: -20° to 65° C Storage Temp: -40° to 100° C Relative Humidity: 0 to 95%, noncondensing

Size: PCIe card 4.380 in x 7.130 in (111.25 mm x 181.10 mm)

Ordering Information

Model	Description
78141	1-Ch. 6.4 GHz or 2-Ch.
	3.2 GHz A/D, 2-Ch.
	6.4 GHz D/A, Kintex
	UltraScale FPGA - PCIe

Options:

- 084 XCKU060-2 FPGA
- 087 XCKU115-2 FPGA
- 104 LVDS FPGA I/O
- 105 Gigabit serial FPGA I/O
- 702 Air cooled, Level L2

Note: Not all combinations of sample rates, decimations and interpolations are available due to JESD204B and PCIe rate limitiations.

Model 53141

Model 53141CORS (left) and Rygged versions

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Kintex UltraScale FPGAs
- One-channel mode with 6.4 GHz, 12-bit A/D
- Two-channel mode with 3.2 GHz, 12-bit A/Ds
- Programmable DDCs (Digital Downconverters)
- Two 6.4 GHz, 14-bit D/As
- Programmable DUCs (Digital Upconverters)
- 5 GB of DDR4 SDRAM
- µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional LVDS and gigabit serial connections to the FPGA for custom I/O
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

Model 53141 is a member of the Jade[™] family of high-performance 3U VPX boards. The Jade architecture embodies a new streamlined approach to FPGA-based boards, simplifying the design to reduce power and cost, while still providing some of the highest-performance FPGA resources available today. Designed to work with Pentek's new Navigator[™] Design Suite of tools, the combination of Jade and Navigator offers users an efficient path to developing and deploying FPGA-based data acquisition and processing.

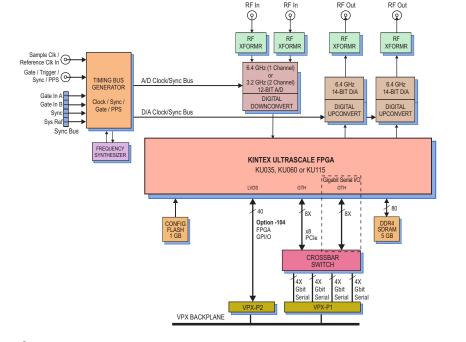
General Information

The 53141 is a high-speed analog-to-digital and digital-to-analog converter with programmable DDCs (digital downconverters) and DUCs (digital upconverters). It is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and generator features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

It includes a 6.4 GHz, 12-bit A/D converter, dual 6.4 GHz, 14-bit D/As and a large DDR4 memory. In addition to supporting PCI Express Gen. 3 as a native interface, Model 53141 includes optional high-bandwidth connections to the Kintex UltraScale FPGA for custom digital I/O.

The Jade Architecture

Evolved from the proven designs of the Pentek Cobalt and Onyx families, Jade raises the processing performance with the new flagship family of Kintex UltraScale FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factoryinstalled functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Jade architecture organizes the FPGA as a container for data-processing applications where each function exists as an intellectual property (IP) module.


Each member of the Jade family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 53141 factory-installed functions include two A/D acquisition and two D/A waveform generator IP modules. In addition, IP modules for DDR4 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 53141 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek Navigator FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the Navigator kit to completely replace the Pentek IP with their own.

Xilinx Kintex UltraScale FPGA

The Kintex UltraScale FPGA site can be populated with a range of FPGAs to match the specific requirements of the processing task, spanning the KU035 through KU115. The KU115 features 5520 DSP48E2 slices >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

A/D Acquisition IP Module

The 53141 features two A/D Acquisition IP Modules for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated a 5 GB DDR4 memory for buffering data in FIFO mode or for storing data in transient capture mode.

In single-channel mode, all of 5 GB are used to store the single-channel of input data. In dual-channel mode, one half of the memory stores data from input channel 1 and the other half stores data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory bank is supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Generator IP Module

The Model 53141 factory installed functions include a sophisticated D/A Waveform Generator IP module. It allows users to easily record to the dual D/As waveforms stored in either on-board memory or offboard host memory.

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - 3U VPX

➤ and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, a lower-cost FPGA can be installed.

Option -104 installs 24 pairs of LVDS connections between the FPGA and the VPX P2 connector the for custom I/O.

Option -105 provides one 8X gigabit link between the FPGA and a serial connector to support serial protocols.

A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer-coupling into a Texas Instruments ADC12DJ3200 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 6.4 GHz and an input bandwidth of 7.9 GHz; or, in dual-channel mode with a sampling rate of 3.2 GHz and input bandwidth of 8.1 GHz.

The A/D's built-in digital down-converters support 2x decimation in real output mode and 4x, 8x, or 16x decimation in complex output mode. The A/D digital outputs are delivered into the Kintex UltraScale FPGA for signal processing, data capture or for routing to other module resources.

Digital Upconverter and D/A Stage

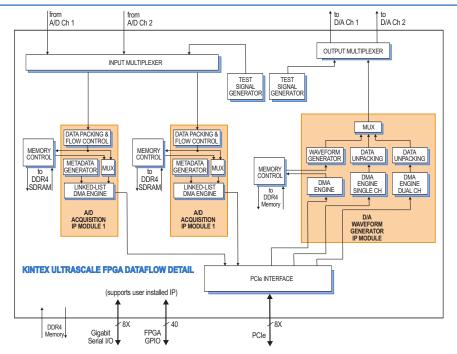
A TI DAC38RF82 DUC (digital upconverter) and D/A accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and dual D/A stages. When operating as a DUC, it interpolates and translates real or complex baseband input signals. It delivers real or quadrature (I+Q) analog outputs to the dual 14-bit D/A converter. Analog output is through a pair of front panel SSMC connectors.

If translation is disabled, the DAC38RF82 acts as a dual interpolating 14-bit D/A. In both modes the DAC38RF82 provides interpolation factors from 1x to 24x.

Memory Resources

The 53141 architecture supports a 5 GB bank of DDR4 SDRAM memory.

User-installed IP along with the Penteksupplied DDR4 controller core within the FPGA can take advantage of the memory for custom applications.


PCI Express Interface

The Model 53141 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x4, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Clocking and Synchronization

The 53141 accepts a sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel µSync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. The Model 5292 high- speed sync board can be used to drive the sync bus to synchronize multichannel systems. >

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - 3U VPX

Development Systems

The SPARK Development Systems are fully-integrated platforms for Pentek Cobalt, Onyx, Jade and Flexor boards. Available in a PC rackmount (Model 8266), a 3U VPX chassis (Model 8267) or a 6U VPX chassis (Model 8264), they were created to save engineers and system integrators the time and expense associated with building and testing a development system. Each SPARK system is delivered with the Pentek board(s) and required software installed and equipped with sufficient cooling and power to ensure optimum performance.

► Fabric-Transparent Crossbar Switch

The 53161 features a unique high-speed switching configuration. A fabric-transparent crossbar switch bridges numerous interfaces and components on the board using gigabit serial data paths with no latency. Data paths can be selected as single (1X) lanes, or groups of four lanes (4X).

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors

A/D Converter Type: ADC12DJ3200 Sampling Rate: Single-channel mode:

6.4 GHz; dual-channel mode: 3.2 GHz **Resolution:** 12 bits

Input Bandwidth: single-channel mode: 7.9 GHz; dual-channel mode: 8.1 GHz

- D/A Converters
 - **Type:** Texas Instruments DAC38RF82 **Output Sampling Rate:** 6.4 GHz. **Resolution:** 14 bits

Sample Clock Source: Front panel SSMC connector

Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Kintex UltraScale

XCKU035-2

Option -084: Xilinx Kintex UltraScale XCKU060-2

Option -087: Xilinx Kintex UltraScale XCKU115-2

Custom I/O

Option -104 provides 24 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O. **Option -105** provides one 4X gigabit link between the FPGA and the VPX P1 connector to support serial protocols.

Memory Type: DDR4 SDRAM

Size: 5 GB

Speed: 1200 MHz (2400 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 **Environmental**

- Standard: L0 (air cooled) Operating Temp: 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, noncondensing
- Option -702: L2 (air cooled) Operating Temp: -20° to 65° C Storage Temp: -40° to 100° C Relative Humidity: 0 to 95%, noncondensing
- **Option -713: L3 (conduction cooled) Operating Temp:** -40° to 70° C **Storage Temp:** -50° to 100° C **Relative Humidity:** 0 to 95%, noncondensing
- Size: 3U VPX board 3.037 in. x 6.717 in. (100.0 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their many features.

VPX Family Comparison

	-	•
	52xxx	53xxx
Form Factor	3U V	VPX
# of XMCs	One	XMC
Crossbar Switch	No	Yes
PCIe path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	20 pairs o	n VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Ordering Information

Model	Description
mouor	Booonpaon

53141 1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - 3U VPX

Options:

- 084 XCKU060-2 FPGA
- 087 XCKU115-2 FPGA
- 104 LVDS FPGA I/O
- 105 Gigabit serial FPGA I/O
- 702 Air cooled, Level L2
- 713 Convection cooled, Level L3

Note: Not all combinations of sample rates, decimations and interpolations are available due to JESD204B and PCIe rate limitiations.

Model 52141CORS (left) and Rygged versions

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Kintex UltraScale FPGAs
- One-channel mode with 6.4 GHz, 12-bit A/D
- Two-channel mode with 3.2 GHz, 12-bit A/Ds
- Programmable DDCs (Digital Downconverters)
- Two 6.4 GHz, 14-bit D/As
- Programmable DUCs (Digital Upconverters)
- 5 GB of DDR4 SDRAM
- µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x4
- Optional LVDS and gigabit serial connections to the FPGA for custom I/O
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

Model 52141 is a member of the Jade[™] family of high-performance PCIe modules. The Jade architecture embodies a new streamlined approach to FPGA-based boards, simplifying the design to reduce power and cost, while still providing some of the highest-performance FPGA resources available today. Designed to work with Pentek's new Navigator[™] Design Suite of tools, the combination of Jade and Navigator offers users an efficient path to developing and deploying

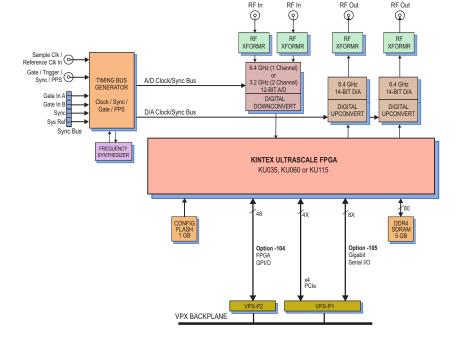
General Information

FPGA-based data acquisition and processing. The 52141 is a high-speed analog-to-digital and digital-to-analog converter with programmable DDCs (digital downconverters) and DUCs (digital upconverters). It is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and generator features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

It includes a 6.4 GHz, 12-bit A/D converter, dual 6.4 GHz, 14-bit D/As and a large DDR4 memory. In addition to supporting PCI Express Gen. 3 as a native interface, Model 52141 includes optional high-bandwidth connections to the Kintex UltraScale FPGA for custom digital I/O.

The Jade Architecture

Evolved from the proven designs of the Pentek Cobalt and Onyx families, Jade raises the processing performance with the new flagship family of Kintex UltraScale FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factoryinstalled functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Jade architecture organizes the FPGA as a container for data-processing applications where each function exists as an intellectual property (IP) module.


Each member of the Jade family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 52141 factory-installed functions include two A/D acquisition and two D/A waveform generator IP modules. In addition, IP modules for DDR4 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 52141 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek Navigator FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the Navigator kit to completely replace the Pentek IP with their own.

Xilinx Kintex UltraScale FPGA

The Kintex UltraScale FPGA site can be populated with a range of FPGAs to match the specific requirements of the processing task, spanning the KU035 through KU115. The KU115 features 5520 DSP48E2 slices >

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904

Email: info@pentek.com

A/D Acquisition IP Module

The 52141 features two A/D Acquisition IP Modules for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated a 5 GB DDR4 memory for buffering data in FIFO mode or for storing data in transient capture mode.

In single-channel mode, all of 5 GB are used to store the single-channel of input data. In dual-channel mode, one half of the memory stores data from input channel 1 and the other half stores data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory bank is supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Generator IP Module

The Model 52141 factoryinstalled functions include a sophisticated D/A Waveform Generator IP module. It allows users to easily record to the dual D/As waveforms stored in either on-board memory or offboard host memory.

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - 3U VPX

and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, a lower-cost FPGA can be installed.

Option -104 installs 24 pairs of LVDS connections from the FPGA to a 68-pin header for custom I/O.

Option -105 provides one 8X gigabit link between the FPGA and a serial connector to support serial protocols.

A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer-coupling into a Texas Instruments ADC12DJ3200 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 6.4 GHz and an input bandwidth of 7.9 GHz; or, in dual-channel mode with a sampling rate of 3.2 GHz and input bandwidth of 8.1 GHz.

The A/D's built-in digital down-converters support 2x decimation in real output mode and 4x, 8x, or 16x decimation in complex output mode. The A/D digital outputs are delivered into the Kintex UltraScale FPGA for signal processing, data capture or for routing to other module resources.

Digital Upconverter and D/A Stage

A TI DAC38RF82 DUC (digital upconverter) and D/A accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and dual D/A stages. When operating as a DUC, it interpolates and translates real or complex baseband input signals. It delivers real or quadrature (I+Q) analog outputs to the dual 14-bit D/A converter. Analog output is through a pair of front panel SSMC connectors.

If translation is disabled, the DAC38RF82 acts as a dual interpolating 14-bit D/A. In both modes the DAC38RF82 provides interpolation factors from 1x to 24x.

Memory Resources

The 52141 architecture supports a 5 GB bank of DDR4 SDRAM memory.

User-installed IP along with the Penteksupplied DDR4 controller core within the FPGA can take advantage of the memory for custom applications.

PCI Express Interface

The Model 52141 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x4, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Clocking and Synchronization

The 52141 accepts a sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel µSync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. The Model 5292 high-speed sync board can be used to drive the sync bus to synchronize multichannel systems. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com

Development Systems

The SPARK Development

Systems are fully-integrated

platforms for Pentek Cobalt,

Onyx, Jade and Flexor boards.

Available in a PC rackmount

■SPARK

Development Systems

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - 3U VPX

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter Type: ADC12DJ3200 Sampling Rate: Single-channel mode: 6.4 GHz; dual-channel mode: 3.2 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: (Model 8266), a 3U VPX chassis 7.9 GHz; dual-channel mode: 8.1 GHz (Model 8267) or a 6U VPX chassis **D/A Converters** (Model 8264), they were created **Type:** Texas Instruments DAC38RF82 to save engineers and system Output Sampling Rate: 6.4 GHz. integrators the time and expense **Resolution:** 14 bits associated with building and test-Sample Clock Source: Front panel SSMC ing a development system. Each connector SPARK system is delivered with Timing Bus: 19-pin µSync bus connector the Pentek board(s) and required includes sync and gate/trigger inputs, software installed and equipped CML with sufficient cooling and power **External Trigger Input** to ensure optimum performance. Type: Front panel female SSMC connector, LVTTL. **Function:** Programmable functions include: trigger, gate, sync and PPS Field Programmable Gate Array Standard: Xilinx Kintex UltraScale XCKU035-2 Option -084: Xilinx Kintex UltraScale XCKU060-2 Option -087: Xilinx Kintex UltraScale XCKU115-2

Custom I/O

Option -104 provides 24 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O. Option -105 provides one 8X gigabit link between the FPGA and the VPX P1 connector to support serial protocols.

Memory

Type: DDR4 SDRAM Size: 5 GB

Speed: 1200 MHz (2400 MHz DDR)

- **PCI-Express Interface** PCI Express Bus: Gen. 1, 2 or 3: x4
- Environmental

Standard: L0 (air cooled) **Operating Temp:** 0° to 50° C **Storage Temp:** –20° to 90° C Relative Humidity: 0 to 95%, noncondensing

- Option -702: L2 (air cooled) **Operating Temp:** -20° to 65° C **Storage Temp:** –40° to 100° C Relative Humidity: 0 to 95%, noncondensing
- Option -713: L3 (conduction cooled) **Operating Temp:** -40° to 70° C Storage Temp: –50° to 100° C Relative Humidity: 0 to 95%, noncondensing
- Size: 3U VPX board 3.037 in. x 6.717 in. (100.0 mm x 170.6 mm)

VPX Families

Pentek offers two families of 3U VPX products: the 52xxx and the 53xxx. For more information on a 53xxx product, please refer to the product datasheet. The table below provides a comparison of their many features.

VPX Family Comparison

	52xxx	53xxx
Form Factor	3U V	/PX
# of XMCs	One	XMC
Crossbar Switch	No	Yes
PCle path	VPX P1	VPX P1 or P2
PCIe width	x4	x8
Option -104 path	24 pairs on VPX P2	20 pairs on VPX P2
Option -105 path	Two x4 or one x8 on VPX P1	Two x4 or one x8 on VPX P1 or P2
Lowest Power	Yes	No
Lowest Price	Yes	No

Ordering Information

Model	Description

52141 1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - 3U VPX

Options:

- 084 XCKU060-2 FPGA
- 087 XCKU115-2 FPGA
- LVDS FPGA I/O - 104
- 105 Gigabit serial FPGA I/O
- 702 Air cooled, Level L2
- 713 Convection cooled, Level L3

Note: Not all combinations of sample rates, decimations and interpolations are available due to JESD204B and PCIe rate limitiations.

Models 57141 & 58141

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Kintex UltraScale FPGAs
- One or two-channel mode with 6.4 GHz, 12-bit A/Ds
- Two-or four-channel mode with 3.2 GHz, 12-bit A/Ds
- Programmable DDCs (Digital Downconverters)
- Two or four-Channel 6.4 GHz, 14-bit D/As
- Programmable DUCs (Digital Upconverters)
- 5 GB of DDR4 SDRAM
- µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional LVDS and gigabit serial connections to the FPGA for custom I/O
- Compatible with several VITA standards including: VITA-46, VITA-48 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

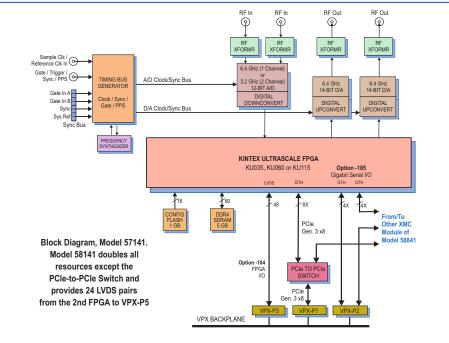
Models 57141 and 58141 are members of the Jade[™] family of high-performance 6U VPX boards. The Jade architecture embodies a new streamlined approach to FPGA-based boards, simplifying the design to reduce power and cost, while still providing some of the highest-performance FPGA resources available today. Designed to work with Pentek's new Navigator[™] Design Suite of tools, the combination of Jade and Navigator offers users an efficient path to developing and deploying FPGA-based data acquisition and processing.

These models consist of one or two Model 71141 XMC modules mounted on a VPX carrier board. Model 57141 is a 6U board with one Model 71141 module while the Model 58141 is a 6U board with two XMC modules rather than one.

They includet two or four A/Ds, complete multiboard clock and sync sections, large DDR4 memories, two or four DDCs, two or four DUCs and two or four D/As. In addition to supporting PCI Express Gen. 3 as a native interface, these models include optional high-bandwidth connections to the Kintex UltraScale FPGAs for custom digital I/O.

The Jade Architecture

Evolved from the proven designs of the Pentek Cobalt and Onyx families, Jade raises the processing performance with the new flagship family of Kintex UltraScale FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factoryinstalled functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Jade architecture organizes the FPGA as a container for data-processing applications where each function exists as an intellectual property (IP) module.


Each member of the Jade family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions include two or four A/D acquisition and two or four D/A waveform generator IP modules. In addition, IP modules for DDR4 SDRAM memories, controllers for all data clocking and synchronization functions, one or two test signal generators and a PCIe interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions, without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek Navigator FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the Navigator kit to completely replace the Pentek IP with their own.

Xilinx Kintex UltraScale FPGA

The Kintex UltraScale FPGA site can be populated with a range of FPGAs to match the specific requirements of the processing task, spanning the KU035 through KU115. The KU115 features 5520 DSP48E2 slices >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

Models 57141 & 58141

1 or 2-Ch. 6.4 GHz, or 2 or 4-Ch. 3.2 GHz A/D, 2 or 4-Ch. 6.4 GHz D/A, 1 or 2 Kintex UltraScale FPGAs - 6U VPX

A/D Acquisition IP Module

These models feature two or four A/D Acquisition IP Modules for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP modules have associated 5 or 10 GB of DDR4 memory for buffering data in FIFO mode or for storing data in transient capture mode.

In single-channel mode, all of 5 GB are used to store the single-channel of input data. In dual-channel mode, one half of the memory stores data from input channel 1 and the other half stores data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory bank is supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Generator IP Module

These models support factory- installed functions which include a sophisticated D/A Waveform Generator IP module. It allows users to easily record to the D/As waveforms stored in either on-board memory or offboard host memory. ➤ and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, a lower-cost FPGA can be installed.

Option -104 provides 24 pairs of LVDS connections between the FPGA and the VPX P3 connector, Model 57141; P3 and P5 connectors, Model 58141.

Option -105 provides two 4X gigabit links between the FPGA and the VPX P2 connector to support serial protocols.

A/D Converter Stage

The front end accepts analog HF or IF inputs on front panel SSMC connectors with transformer-coupling into a Texas Instruments ADC12DJ3200 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 6.4 GHz and an input bandwidth of 7.9 GHz; or, in dual-channel mode with a sampling rate of 3.2 GHz and input bandwidth of 8.1 GHz.

The A/D's built-in digital downconverters support 2x decimation in real output mode and 4x, 8x, or 16x decimation in complex output mode. The A/D digital outputs are delivered into the Kintex UltraScale FPGA for signal processing, data capture or for routing to other module resources.

Digital Upconverter and D/A Stage

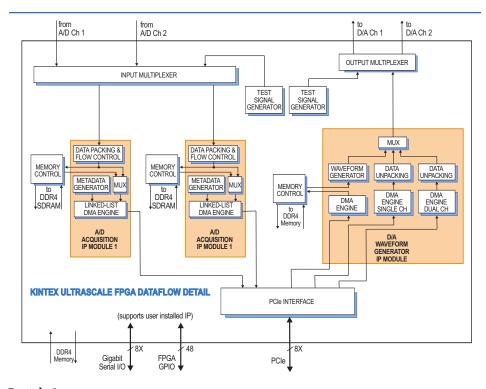
A TI DAC38RF82 DUC (digital upconverter) and D/A accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and dual D/A stages. When operating as a DUC, it interpolates and translates real or complex baseband input signals. It delivers real or quadrature (I+Q) analog outputs to the dual 14-bit D/A converter. Analog output is through front panel SSMC connectors.

If translation is disabled, the DAC38RF82 acts as a dual interpolating 14-bit D/A. In both modes, the DAC38RF82 provides interpolation factors from 1x to 24x.

Memory Resources

The architecture supports 5 or 10 GB bank of DDR4 SDRAM memory.

User-installed IP along with the Penteksupplied DDR4 controller core(s) within the FPGA can take advantage of the memory for custom applications.


PCI Express Interface

These models include an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Clocking and Synchronization

These models accept a sample clock via front panel SSMC connectors. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel μ Sync bus connector allows multiple boards to be synchronized, ideal \succ

Pentek, Inc. One Park Way & Upper Saddle River

New Jersey 07458
Tel: 201/818/5900

Fax: 201/818/5904

Email: info@pentek.com

Models 57141 & 58141

Development Systems

The SPARK Development Systems are fully-integrated platforms for Pentek Cobalt, Onyx, Jade and Flexor boards. Available in a PC rackmount (Model 8266), a 3U VPX chassis (Model 8267) or a 6U VPX chassis (Model 8264), they were created to save engineers and system integrators the time and expense associated with building and testing a development system. Each SPARK system is delivered with the Pentek board(s) and required software installed and equipped with sufficient cooling and power to ensure optimum performance.

1 or 2-Ch. 6.4 GHz, or 2 or 4-Ch. 3.2 GHz A/D, 2 or 4-Ch. 6.4 GHz D/A, 1 or 2 Kintex UltraScale FPGAs - 6U VPX

➤ for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. The Model 5792 high-speed sync board can be used to drive the sync bus to synchronize multichannel systems.

Specifications

Model 57141 One A/D Model 58141 Two A/Ds Front Panel Analog Signal Inputs (2 or 4) Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converters (1 or 2) Type: ADC12DJ3200 Sampling Rate: Single-channel mode: 6.4 GHz; dual-channel mode: 3.2 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 7.9 GHz; dual-channel mode: 8.1 GHz D/A Converters (2 or 4) Type: Texas Instruments DAC38RF82 Output Sampling Rate: 6.4 GHz. Resolution: 14 bits Sample Clock Source (1 or 2) Front panel SSMC connector Timing Bus (1 or 2) 19-pin µSync bus connector includes sync and gate/trigger inputs, CML External Trigger Input (1 or 2) Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Arrays (1 or 2) Standard: Xilinx Kintex UltraScale XCKU035-2 Option -084: Xilinx Kintex UltraScale XCKU060-2 Option -087: Xilinx Kintex UltraScale XCKU115-2 Custom I/O Option -104 provides 24 pairs of LVDS connections between the FPGA and the VPX P3 connector, Model 57141; P3 and P5 connectors, Model 58141. Option -105 provides two 4X gigabit links between the FPGA and the VPX P2 connector to support serial protocols. Memory (1 or 2) Type: DDR4 SDRAM Size: 5 or 10 GB Speed: 1200 MHz (2400 MHz DDR) **PCI-Express Interface** PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 Environmental Standard: L0 (air cooled) **Operating Temp:** 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, noncondensing Option -702: L2 (air cooled) **Operating Temp:** -20° to 65° C Storage Temp: -40° to 100° C Relative Humidity: 0 to 95%, noncondensing Option -713: L3 (conduction cooled) **Operating Temp:** –40° to 70° C Storage Temp: -50° to 100° C Relative Humidity: 0 to 95%, noncondensing

Size: 6U Board 9.187 in x 6.717 in (233.3 mm x 170.6 mm)

Ordering Information

Model Description

57141 1-Ch. 6.4 GHz or 2-Ch.
 3.2 GHz A/D, 2-Ch.
 6.4 GHz D/A, Kintex
 UltraScale FPGA - 6U
 VPX
 58141 2-Ch. 6.4 GHz or 4-Ch.

3.2 GHz A/D, 4-Ch. 6.4 GHz D/A, 2 ea. Ultra-Scale FPGAs - 6U VPX

Options:

- 084 XCKU060-2 FPGA
- 087 XCKU115-2 FPGA
- 104 LVDS FPGA I/O
- 105 Gigabit serial FPGA I/O
- 702 Air cooled, Level L2
- 713 Convection cooled, Level L3

Note: Not all combinations of sample rates, decimations and interpolations are available due to JESD204B and PCIe rate limitiations.

Model 74141

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Kintex Ultra-Scale FPGAs
- One or two-channel mode with one or two 6.4 GHz, 12-bit A/Ds
- Two or four-channel mode with two or four 3.2 GHz. 12-hit A/Ds
- Two or four-channel mode with two or four 6.4 GHz. 14-bit D/As
- Programmable DDCs (Digital Downconverters)
- 5 or 10 GB of DDR4 SDRAM
- µSync clock/sync bus for multiboard synchronization
- **Optional LVDS connections** to the FPGA for custom I/O

General Information

Models 72141, 73141 and 74141 are members of the Jade[™] family of high-performance cPCI boards. The Jade architecture embodies a new streamlined approach to FPGA-based boards, simplifying the design to reduce power and cost, while still providing some of the highest-performance FPGA resources available today. Designed to work with Pentek's new Navigator[™] Design Suite of tools, the combination of Jade and Navigator offers users an efficient path to developing and deploying FPGA-based data acquisition and processing.

These models consist of one or two Model 71141 XMC modules mounted on a cPCI carrier board. Model 72141 is a 6U cPCI board while the Model 73141 is a 3U cPCI board; both are equipped with one Model 71141 XMC. Model 74141 is a 6U cPCI board with two XMC modules rather than one.

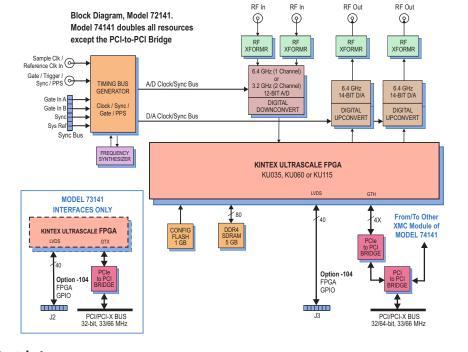
They includet two or four A/Ds, complete multiboard clock and sync sections, large DDR4 memories, two or four DDCs, two or four DUCs and two or four D/As. These models include optional high-bandwidth connections to the Kintex UltraScale FPGAs for custom digital I/O.

The Jade Architecture

Evolved from the proven designs of the Pentek Cobalt and Onyx families, Jade raises the processing performance with the new flagship family of Kintex UltraScale FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factoryinstalled functions including data multiplexing,

channel selection, data packing, gating, triggering and memory control. The Jade architecture organizes the FPGA as a container for data-processing applications where each function exists as an intellectual property (IP) module.

Each member of the Jade family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The factory-installed functions include two or four A/D acquisition IP modules.


Each of the acquisition IP modules contains a programmable DDC IP core; IP modules for DDR4 SDRAM memory; controllers for all data clocking and synchronization functions; test signal generators; and a PCI-X interface complete the factory-installed functions and enable these models to operate as complete turnkey solutions for many applications, thereby saving the cost and time of custom IP development.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek Navigator FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the Navigator kit to completely replace the Pentek IP with their own.

Xilinx Kintex UltraScale FPGA

The Kintex UltraScale FPGA site can be populated with a range of FPGAs to match the specific requirements of the processing task, spanning the KU035 through KU115. >

Pentek, Inc. One Park Way
 Upper Saddle River
 New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Models 72141, 73141 and 74141

A/D Acquisition IP Module

These models feature two or four A/D Acquisition IP Modules for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP modules have associated 5 or 10 GB of DDR4 memory for buffering data in FIFO mode or for storing data in transient capture mode.

In single-channel mode, all of 5 GB are used to store the single-channel of input data. In dual-channel mode, one half of the memory stores data from input channel 1 and the other half stores data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory bank is supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Generator IP Module

These models support factoryinstalled functions which include a sophisticated D/A Waveform Generator IP module. It allows users to easily record to the D/As waveforms stored in either onboard memory or off-board host memory. ➤ The KU115 features 5520 DSP48E2 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, a lower-cost FPGA can be installed.

Option -104 provides 20 pairs of LVDS connections between the FPGA and the J3 (or J2 connector, Model 73141) for custom I/O.

A/D Converter Stage

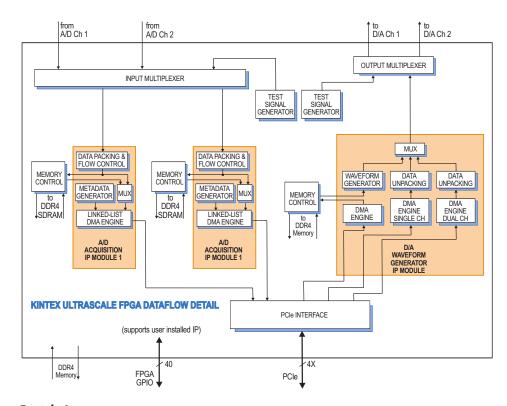
The front end accepts analog HF or IF inputs on front panel SSMC connectors with transformer coupling into Texas Instruments ADC12D1800 12-bit A/Ds. The converters operate in single-channel interleaved mode with a sampling rate of 3.6 GHz and an input bandwidth of 1.75 GHz; or, in dual-channel mode with a sampling rate of 1.8 GHz and input bandwidth of 2.8 GHz.

The full-scale input level of the ADC12D1800 can be digitally trimmed from +2 dBm to +4 dBm to simplify system calibration. A built-in AutoSync feature supports A/D synchronization across multiple boards.

The A/D digital outputs are delivered into the Kintex UltraScale FPGAs for signal processing, data capture or for routing to other board resources.

Clocking and Synchronization

These models accept a 1.8 GHz dual-edge sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.


A front panel µSync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. Two units can be synchronized with a simple cable. For larger systems, multiple units can be synchronized using the Model 7292 high-speed sync boards to drive the sync bus.

Memory Resources

The architecture supports 5 or 10 GB banks of DDR4 SDRAM memory. User-installed IP along with the Pentek- supplied DDR4 controller core(s) within the FPGA(s) can take advantage of the memory for custom applications.

PCI-X Interface

These models include an industrystandard interface fully compliant with PCI-X bus specifications. The interface includes multiple DMA controllers for efficient transfers to and from the board. Data widths of 32 or 64 bits and data rates of 33 and 66 MHz are supported. Model 73141: 32 bits only.

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201-818-5900

Fax: 201-818-5904

Email: info@pentek.com

1 or 2-Ch. 6.4 GHz, or 2 or 4-Ch. 3.2 GHz A/D, 2 or 4-Ch. 6.4 GHz D/A, 1 or 2 Kintex UltraScale FPGAs - cPCI

Specifications

Model 72141 or Model 73141: Two A/Ds Model 74141: Four A/Ds Model 72141 or Model 73141: Two D/As Model 74141: Four D/As Front Panel Analog Signal Inputs (2 or 4) Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter (2 or 4) Type: ADC12DJ3200 Sampling Rate: Single-channel mode: 6.4 GHz; dual-channel mode: 3.2 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 7.9 GHz; dual-channel mode: 8.1 GHz D/A Converters (2 or 4) Type: Texas Instruments DAC38RF82 Output Sampling Rate: 6.4 GHz. **Resolution:** 14 bits Sample Clock Source (1 or 2) Front panel SSMC connector Timing Bus (1 or 2) 19-pin µSync bus connector includes ync and gate/trigger inputs, CML External Trigger Input (1 or 2) Type: Front panel female SSMC connector, LVTTL Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array (1 or 2) Standard: Xilinx Kintex UltraScale XCKU035-2 Option -084: Xilinx Kintex UltraScale XCKU060-2 Option -087: Xilinx Kintex UltraScale XCKU115-2 Custom I/O Option -104: Provides 20 LVDS pairs between the FPGA and the J2 connector, Model 73141; J3 connector, Model 72141; J3 and J5 connectors, Model 74141 Memory (1 or 2) Type: DDR4 SDRAM Size: GB Speed: 1200 MHz (2400 MHz DDR) **PCI-X** Interface PCI-X Bus: 32 or 64 bits at 33 or 66 MHz Model 73141: 32 bits only Environmental Standard: L0 (air cooled) **Operating Temp:** 0° to 50° C **Storage Temp:** –20° to 90° C Relative Humidity: 0 to 95%, noncondensing Option -702: L2 (air cooled) **Operating Temp:** –20° to 65° C Storage Temp: -40° to 100° C Relative Humidity: 0 to 95%, noncondensing **Size:** 6U board 9.187 in x 6.717 in

(233.3 mm x 170.6 mm) 3U board 3.937 in. x 6.717 in. (100.00 mm x 170.61 mm)

Ordering Information

Model	Description
72141	1 or 2-Ch. 6.4 GHz or 2 or 4-Ch. 3.2 GHz A/D, with 2 or 4-Ch. 6.4 GHz D/A and one Kintex UltraScale FPGA - 6U cPCI
73141	1 or 2-Ch. 6.4 GHz or 2 or 4-Ch. 3.2 GHz A/D, with 2 or 4-Ch. 6.4 GHz D/A and one Kintex UltraScale FPGA - 6U cPCI
74141	2-Ch. 6.4 GHz or 4-Ch. 3.2 GHz A/D, with 2 or 4-Ch. 6.4 GHz D/A and two Kintex UltraScale FPGAs - 6U cPCI
Options:	
- 084	XCKU060-2 FPGA
- 087	XCKU115-2 FPGA
-104	LVDS I/O between the

- -104 LVDS I/O between the FPGA and J2 connector, Model 73141; J3 connector, Model 72141; J3 and J5 connectors, Model 74841
- -702 Air cooled, Level L2

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Model 56141

Features

- Ideal radar and software radio interface solution
- Supports Xilinx Kintex UltraScale FPGAs
- One-channel mode with 6.4 GHz, 12-bit A/D
- Two-channel mode with 3.2 GHz, 12-bit A/Ds
- Programmable DDCs (Digital Downconverters)
- Two 6.4 GHz, 14-bit D/As
- Programmable DUCs (Digital Upconverters)
- 5 GB of DDR4 SDRAM
- µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional LVDS and gigabit serial connections to the FPGA for custom I/O
- AMC 1 compliant
- IPMI 2.0 compliant MMC (Module Management Controller)
- Ruggedized and conductioncooled versions available

General Information

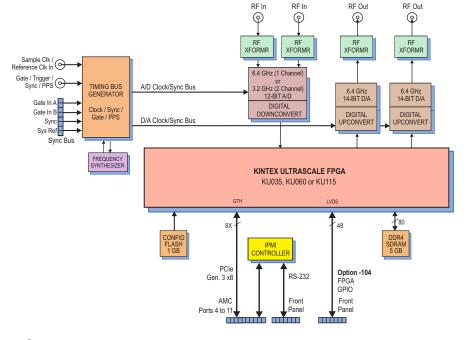
Model 56141 is a member of the Jade[™] family of high-performance AMC boards. The Jade architecture embodies a new streamlined approach to FPGA-based boards, simplifying the design to reduce power and cost, while still providing some of the highest-performance FPGA resources available today. Designed to work with Pentek's new Navigator[™] Design Suite of tools, the combination of Jade and Navigator offers users an efficient path to developing and deploying FPGA-based data acquisition and processing.

The 56141 is a high-speed analog-to-digital and digital-to-analog converter with programmable DDCs (digital downconverters) and DUCs (digital upconverters). It is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and generator features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

It includes a 6.4 GHz, 12-bit A/D converter, dual 6.4 GHz, 14-bit D/As and a large DDR4 memory. In addition to supporting PCI Express Gen. 3 as a native interface, Model 56141 includes optional high-bandwidth connections to the Kintex UltraScale FPGA for custom digital I/O.

The Jade Architecture

Evolved from the proven designs of the Pentek Cobalt and Onyx families, Jade raises the processing performance with the new flagship family of Kintex UltraScale FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factoryinstalled functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Jade architecture organizes the FPGA as a container for data-processing applications where each function exists as an intellectual property (IP) module.


Each member of the Jade family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 56141 factory-installed functions include two A/D acquisition and two D/A waveform generator IP modules. In addition, IP modules for DDR4 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 56141 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek Navigator FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the Navigator kit to completely replace the Pentek IP with their own.

Xilinx Kintex UltraScale FPGA

The Kintex UltraScale FPGA site can be populated with a range of FPGAs to match the specific requirements of the processing task, spanning the KU035 through KU115. The KU115 features 5520 DSP48E2 slices >

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904

Email: info@pentek.com

A/D Acquisition IP Module

The 56141 features two A/D Acquisition IP Modules for easy capture and data moving. The IP module can receive data from the A/D, or a test signal generator. The IP module has associated a 5 GB DDR4 memory for buffering data in FIFO mode or for storing data in transient capture mode.

In single-channel mode, all of 5 GB are used to store the single-channel of input data. In dual-channel mode, one half of the memory stores data from input channel 1 and the other half stores data from input channel 2. In both modes, continuous, full-rate transient capture of 12-bit data is supported.

The memory bank is supported with a DMA engine for moving A/D data through the PCIe interface. This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Generator IP Module

The Model 56141 factoryinstalled functions include a sophisticated D/A Waveform Generator IP module. It allows users to easily record to the dual D/As waveforms stored in either on-board memory or off-board host memory.

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - AMC

➤ and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, a lower-cost FPGA can be installed.

Option -104 provides 24 pairs of LVDS connections between the FPGA and a front-panel connector for custom I/O.

A/D Converter Stage

The front end accepts analog HF or IF inputs on a pair of front panel SSMC connectors with transformer-coupling into a Texas Instruments ADC12DJ3200 12-bit A/D. The converter operates in single-channel interleaved mode with a sampling rate of 6.4 GHz and an input bandwidth of 7.9 GHz; or, in dual-channel mode with a sampling rate of 3.2 GHz and input bandwidth of 8.1 GHz.

The A/D's built-in digital downconverters support 2x decimation in real output mode and 4x, 8x, or 16x decimation in complex output mode. The A/D digital outputs are delivered into the Kintex UltraScale FPGA for signal processing, data capture or for routing to other module resources.

Digital Upconverter and D/A Stage

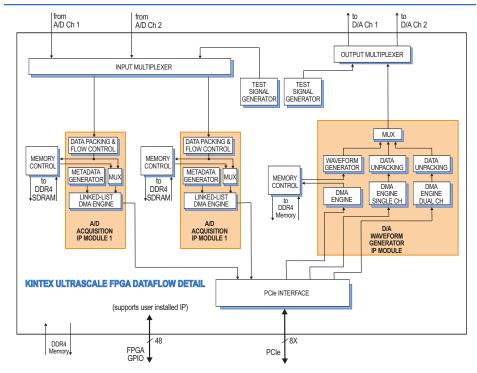
A TI DAC38RF82 DUC (digital upconverter) and D/A accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and dual D/A stages. When operating as a DUC, it interpolates and translates real or complex baseband input signals. It delivers real or quadrature (I+Q) analog outputs to the dual 14-bit D/A converter. Analog output is through a pair of front panel SSMC connectors.

If translation is disabled, the DAC38RF82 acts as a dual interpolating 14-bit D/A. In both modes, the DAC38RF82 provides interpolation factors from 1x to 24x.

Memory Resources

The 56141 architecture supports a 5 GB bank of DDR4 SDRAM memory.

User-installed IP along with the Penteksupplied DDR4 controller core within the FPGA can take advantage of the memory for custom applications.


PCI Express Interface

The Model 56141 includes an industrystandard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x4, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Clocking and Synchronization

The 56141 accepts a sample clock via a front panel SSMC connector. A second front panel SSMC accepts a TTL signal that can function as Gate, PPS or Sync.

A front panel µSync bus connector allows multiple boards to be synchronized, ideal for multichannel systems. The µSync bus includes gate, reset, and in and out reference clock signals. The Model 5692 high-speed sync board can be used to drive the sync bus to synchronize multichannel systems. >

Pentek, Inc. One Park Way & Upper Saddle River

New Jersey 07458
Tel: 201/818/5900

Fax: 201/818/5904

Email: info@pentek.com

1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Ch. 6.4 GHz D/A, Kintex UltraScale FPGA - AMC

► AMC Interface

The Model 56141 complies with the AMC.1 specification by providing an x8 PCIe connection to Advanced TCA carriers or μ TCA chassis. Module management is provided by an IPMI 2.0 MMC (Module Management Controller).

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel female SSMC connectors A/D Converter Type: ADC12DJ3200 Sampling Rate: Single-channel mode: 6.4 GHz; dual-channel mode: 3.2 GHz Resolution: 12 bits Input Bandwidth: single-channel mode: 7.9 GHz; dual-channel mode: 8.1 GHz **D/A Converters** Type: Texas Instruments DAC38RF82 Output Sampling Rate: 6.4 GHz. Resolution: 14 bits Sample Clock Source: Front panel SSMC connector Timing Bus: 19-pin µSync bus connector includes sync and gate/trigger inputs, CML **External Trigger Input** Type: Front panel female SSMC connector, LVTTL **Function:** Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Kintex UltraScale XCKU035-2 Option -084: Xilinx Kintex UltraScale XCKU060-2 Option -087: Xilinx Kintex UltraScale XCKU115-2 Custom I/O Option -104 provides 24 pairs of LVDS connections between the FPGA and a front-panel connector for custom I/O. Memory Type: DDR4 SDRAM Size: 5 GB Speed: 1200 MHz (2400 MHz DDR) **PCI-Express Interface** PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 Environmental Standard: L0 (air cooled) **Operating Temp:** 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, noncondensing Option -702: L2 (air cooled) **Operating Temp:** –20° to 65° C Storage Temp: -40° to 100° C Relative Humidity: 0 to 95%, noncondensing Option -713: L3 (conduction cooled) **Operating Temp:** -40° to 70° C Storage Temp: -50° to 100° C Relative Humidity: 0 to 95%, noncondensing Size: Single-width, full-height AMC module 2.890 in x 7.110 in

(73.40 mm x 180.60 mm)

Ordering Information

Model Description

56141 1-Ch. 6.4 GHz or 2-Ch. 3.2 GHz A/D, 2-Chan. 6.4 GHz D/A, Kintex UltraScale FPGA - AMC

Options:

- 084 XCKU060-2 FPGA
- 087 XCKU115-2 FPGA
- 104 LVDS FPGA I/O
- 702 Air cooled, Level L2
- 713 Convection cooled, Level L3

Note: Not all combinations of sample rates, decimations and interpolations are available due to JESD204B and PCIe rate limitiations.

Model 5973

Flexor Gate press Gate Flow Ready Flow Board Support Package

Features

- VITA-57.1 FMC site offers access to a wide range of possible I/O
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- 4 GB of DDR3 SDRAM
- PCI Express (Gen. 1, 2 and 3) interface up to x8
- User-configurable gigabit serial interface
- Optional optical Interface for backplane gigabit serial interboard communication
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- Compatible with several VITA standards including: VITA-46, VITA-48, VITA-66.4 and VITA-65 (OpenVPX[™] System Specification)
- Ruggedized and conductioncooled versions available

General Information

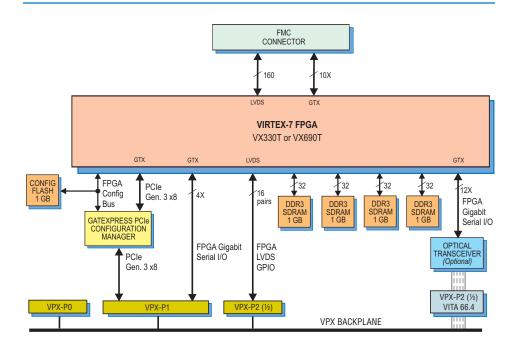
The Flexor[®] Model 5973 is a high-performance 3U OpenVPX board based on the Xilinx Virtex-7 FPGA. As a stand-alone processor board, it provides an ideal development and deployment platform for demanding signal-processing applications.

The 5973 includes a VITA-57.1 FMC site providing access to a wide range of I/O options. When combined with any of Pentek's analog interface FMCs, it becomes a complete multichannel data conversion and processing subsystem suitable for connection to IF, HF or RF ports of a communications or radar system.

The 5973 architecture includes an optional built-in gigabit serial optical interface. Up to 12 high-speed duplex optical lanes are available on an MTP connector. With the installation of a serial protocol in the FPGA, this interface enables a high-bandwidth connection between 5973s mounted in the same chassis or even over extended distances between them.

Board Architecture

Based on the proven design of the Pentek Onyx family of Virtex-7 products, the 5973 retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the main board and the FMC, enabling factory-installed functions That Include data multiplexing, channel selection, data packing, gating, triggering and memory control. The architecture organizes the FPGA as a container for data-processing applications where each function exists as an intellectual property (IP) module.


When integrated with a Pentek FMC, the 5973 is delivered with factory-installed applications ideally matched to the board's analog or digital interfaces. These can include A/D acquisition and D/A waveform playback engines for simplifying data capture and playback.

Data tagging and metadata packet generation, in conjunction with powerful linked-list DMA engines, provide a streamlined interface for moving data on and off the board and identifying data packets with channel, timing and sample count information.

IP modules for DDR3 SDRAM memories, controllers for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factoryinstalled functions and enable the 5973 and its installed FMC to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory-installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

Model 8267

The Model 8267 is a fullyintegrated development system for Pentek Cobalt, Onyx and Flexor 3U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

FMC Product Combinations

If you wish to purchase this FMC Carrier in combination with an A/D FMC module, please see:

- FlexorSet Model 5973-312
- FlexorSet Model 5973-316
- FlexorSet Model 5973-320
- FlexorSet Model 5973-324

Ordering Information

Model	Description
5973	3U OpenVPX Virtex-7 Processor and FMC Carrier
Options:	
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to VPX P2
-110	VITA-66.4 12X optical interface

Contact Pentek for availability of rugged and conduction-cooled versions

ModelDescription8267VPX Development System
See 8267 Datasheet for
Options

PENTEK

Xilinx Virtex-7 FPGA

The 5973 can be optionally populated with one of two Virtex-7 FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/ decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Sixteen pairs of LVDS connections are optionally provided between the FPGA and the VPX P2 connector for custom I/O. For applications requiring custom gigabit links, a 4X connection is supported between the FPGA and the VPX P1 connector to support serial protocols.

The 5973 supports the emerging VITA-66.4 standard, that provides 12 optical duplex lanes to the backplane. With the installation of a serial protocol, the VITA-66.4 interface enables gigabit backplane communications between boards independent of the PCIe interface.

GateXpress for FPGA Configuration

The 5973 architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most SBCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command. The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

Specifications

- I/O Module Interface: VITA-57.1, High Pin Count FMC site
- Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2

Custom FPGA I/O

4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols.

Parallel (Option -104): 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Optical (Option -110):** VITA-66.4, 12X duplex lanes

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental: Level L1 & L2 air-cooled,

Level L3 conduction-cooled, ruggedized **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

Features

- VITA-57.4 HSPC FMC+ site offers access to a wide range of possible I/O
- Supports Xilinx Kintex UltraScale FPGAs
- 9 GB of DDR4 SDRAM
- On-board GPS receiver
- PCI Express (Gen. 1, 2 and 3) interface up to x8
- User-configurable gigabit serial interface
- LVDS connections to the Kintex UltraScale FPGA for custom I/O
- Optional optical Interface for backplane gigabit serial interboard communication
- Compatible with several VITA standards including: VITA-46, VITA-48, VITA-66.4, VITA-57.4 and VITA-65 (OpenVPX[™] System Specification)
- Ruggedized and conductioncooled versions available

General Information

The JadeFX[™] Model 5983 is a highperformance 3U OpenVPX board based on the Xilinx Kintex UltraScale FPGA. As a stand-alone processor board, it provides an ideal development and deployment platform for demanding signal-processing applications.

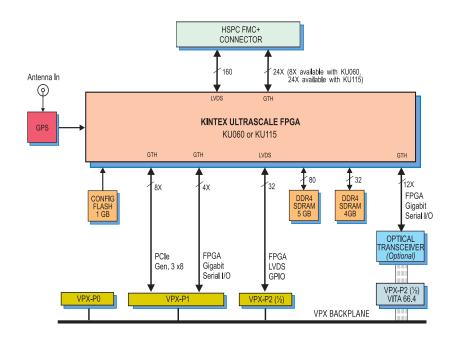
The 5983 includes a VITA-57.4 FMC site providing access to a wide range of I/O options. When combined with any of Pentek's analog interface Flexor® FMCs to create a FlexorSet, it becomes a complete multichannel data conversion and processing subsystem suitable for connection to IF, HF or RF ports of a communications or radar system.

In addition to the Gen. 3 x8 PCIe interface, the 5983 architecture includes an optional built-in gigabit serial optical interface. Up to 12 high-speed duplex optical lanes are available on a VITA-66.4connector. With the installation of a serial protocol in the FPGA, this interface enables a high-bandwidth connection between 5983s mounted in the same chassis or even over extended distances between them.

Board Architecture

Based on the proven design of the Pentek Jade family of Kintex UltraScale products, the JadeFX 5983 retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the main board and the FMC, enabling factory-installed functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

The architecture organizes the FPGA as a container for data-processing applications where each function exists as an intellectual property (IP) module.


When integrated with a Pentek FMC, the 5983 is delivered with factory-installed applications ideally matched to the board's analog or digital interfaces. These can include A/D acquisition and D/A waveform generation engines for simplifying data capture and playback.

Data tagging and metadata packet generation, in conjunction with powerful linked-list DMA engines, provide a streamlined interface for moving data on and off the board and identifying data packets with channel timing and sample-count information.

IP modules for DDR4 SDRAM memories, controllers for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factoryinstalled functions and enable the 5983 and its installed FMC to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. The Pentek Navigator FPGA Design Kits include the board's entire FPGA design as a block diagram that can be edited in Xilinx's Vivado tool suite. In addition to the block diagrams, all source code and complete IP core documentation is included. Developers can >

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458 Tel: 201·818·5900 ◆ Fax: 201·818·5904 ◆ Email: info@pentek.com

Model 8267

The Model 8267 is a fullyintegrated development system for Pentek Cobalt, Onyx, OnyxFx and JadeFX 3U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

FlexorSet Product Combinations

If you wish to purchase this FMC Carrier in combination with an FMC module, please see:

- FlexorSet Model 5983-313
- FlexorSet Model 5983-317
- FlexorSet Model 5983-320
- FlexorSet Model 5983-324

Ordering Information

Model	Description
5983	3U OpenVPX Kintex UltraScale Processor and FMC Carrier
Options:	
-087	XCKU115-2 FPGA
-110	VITA-66.4 12X optical interface

-180	GPS Support
-702	Air cooled, Level L2
-763	Conduction-cooled,
	Level L3

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System See 8267 Datasheet for Options

> integrate their own IP along with the Pentek factory-installed functions or use the Navigator kit to completely replace the Pentek IP with their own.

Xilinx Kintex UltraScale FPGA

The 5983 can be optionally populated with one of two Kintex UltraScale FPGAs to match the specific requirements of the processing task. Supported FPGAs are KU060 or KU115. The KU115 features 5520 DSP48E2 slices and is ideal for modulation/ demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost KU060 can be installed.

Sixteen pairs of LVDS connections are optionally provided between the FPGA and the VPX P2 connector for custom I/O. For applications requiring custom gigabit links, a 4X connection is supported between the FPGA and the VPX P1 connector to support serial protocols.

The 5983 supports the VITA-66.4 standard, that provides up to 12 optical duplex lanes to the backplane. With the installation of a serial protocol, the VITA-66.4 interface enables gigabit backplane communications between boards independent of the PCIe interface.

GPS

An optional GPS receiver provides time and position information to the FPGA. This information can be used for precise data tagging.

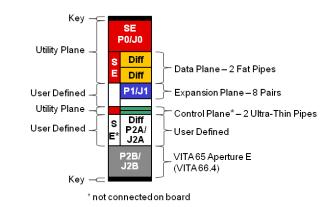
Specifications

- I/O Module Interface: VITA-57.4, High Serial Pin-Count FMC site
- Field Programmable Gate Array Standard: Xilinx Kintex UltraScale XCKU060-2

Optional: Xilinx Kintex UltraScale XCKU115-2

Custom FPGA I/O

Serial : 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. Parallel: 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O


Optical (Option -110): VITA-66.4, 12X duplex lanes

Memory

Type: DDR4 SDRAM Size: Two banks, one 4 GB and one 5 GB Speed: 1200 MHz (2400 MHz DDR)

- **PCI-Express Interface**
- **PCI Express Bus:** Gen. 1, 2 or 3: x4 or x8; **Environmental**
 - Standard: L0 (air cooled) Operating Temp: 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, noncondensing
 - **Option -702: L2 (air cooled) Operating Temp:** -20° to 65° C **Storage Temp:** -40° to 100° C **Relative Humidity:** 0 to 95%, noncondensing
 - **Option -763: L3 (conduction cooled) Operating Temp:** -40° to 70° C **Storage Temp:** -50° to 100° C **Relative Humidity:** 0 to 95%, noncondensing
- **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)
- **OpenVPX Compatibility:** The Model 5983 is compatibile with the following module profile, as defined by the VITA 65 Open-VPX Specification:

SLT3-PAY-2F1F2U1E-14.6.6-1

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201-818-5900

Fax: 201-818-5904

Email: info@pentek.com

Model 7070

Features

- VITA-57.1 FMC site offers access to a wide range of possible I/O
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- 4 GB of DDR3 SDRAM
- PCI Express (Gen. 1, 2 and 3) interface up to x8
- Optional user-configurable 12X optical gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- Commercial and extendedtemperature versions available

General Information

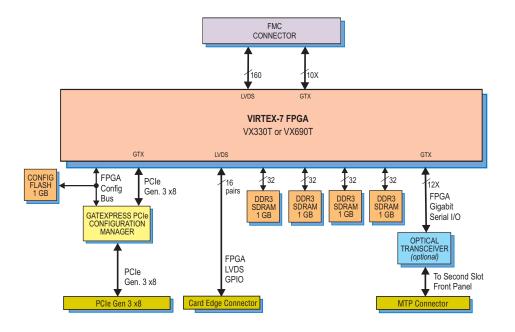
The Flexor[®] Model 7070 is a high-performance PCIe board based on the Xilinx Virtex-7 FPGA. As a stand-alone processor board, it provides an ideal development and deployment platform for demanding signal processing applications.

The 7070 includes a VITA-57.1 FMC site providing access to a wide range of I/O options. When combined with any of Pentek's analog interface FMCs, it becomes a complete multichannel data conversion and processing subsystem suitable for connection to IF, HF or RF ports of a communications or radar system.

The 7070 architecture includes an optional built-in gigabit serial optical interface. Up to 12 high-speed duplex optical lanes are available on an MTP connector. With the installation of a serial protocol in the FPGA, this interface enables a high-bandwidth connection between 7070s mounted in the same chassis or even over extended distances between them.

Board Architecture

Based on the proven design of the Pentek Onyx family of Virtex-7 products, the 7070 retains all of the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the main board and the FMC module, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.


When integrated with a Pentek FMC, the 7070 is delivered with factory-installed applications ideally matched to the board's analog or digital interfaces. These can include A/D acquisition and D/A waveform playback engines for simplifying data capture and playback.

Data tagging and metadata packet generation, in conjunction with powerful linked-list DMA engines, provide a streamlined interface for moving data on and off the board and identifying data packets with channel, timing and sample-count information.

IP modules for DDR3 SDRAM memories, controllers for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factoryinstalled functions and enable the 7070 and installed FMC to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

FMC Product Combinations

If you wish to purchase this FMC Carrier in combination with an A/D FMC module, please see:

- FlexorSet Model 7070-312
- FlexorSet Model 7070-316
- FlexorSet Model 7070-320
- FlexorSet Model 7070-324

Ordering Information

Model	Description
7070	PCI Express Virtex-7
	Processor and FMC
	Carrier - x8 PCIe
Options:	
-076	XC7VX690T-2 FPGA
-104	16 pairs LVDS FPGA I/O
-110	12x gigabit serial optical I/O

Contact Pentek for availability of extended-temperature versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options

Xilinx Virtex-7 FPGA

The 7070 can be optionally populated with one of two Virtex-7 FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/ decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Sixteen pairs of LVDS connections are optionally provided between the FPGA and a card edge connector for custom I/O. For applications requiring custom gigabit links, up to 12 high-speed, full-duplex FPGA GTX lanes driven via an optical transceiver support serial protocols. A 12-lane MTP optical connector is presented on a PCIe slot panel that can be installed in an empty, adjacent PCIe slot.

When configured with a VX330T FPGA, four duplex lanes are available.

GateXpress for FPGA Configuration

The 7070 architecture includes GateXpress, a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on most SBCs.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first is the option to load an alternate image from FLASH through software control. The user selects the desired image and issues a reload command. The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

Specifications

- I/O Module Interface: VITA-57.1, High Pin Count FMC site
- Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX690T-2

Custom FPGA I/O

Parallel, Option -104: 16 pairs of LVDS connections between the FPGA and a card-edge connector.

Optical (Option -110): User-configurable 12X (VX690T) or 4X (VX 330T) optical gigabit serial interface, MTP connector installed in an empty adjacent slot

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR) PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental: Level L1 & L2 air cooled, Size: Half-length PCIe card

Features

- Sold as the:
 - FlexorSet Model 5973-312
- FlexorSet Model 7070-312
- Four 250 MHz 16-bit A/Ds
- One digital upconverter
- Two 800 MHz 16-bit D/As
- Sample clock synchronization to an external system reference
- VITA 57 FMC compatible
- Complete radar or software radio interface solution when combined with the Model 5973 3U OpenVPX or Model 7070 PCIe Virtex-7 FMC carriers
- Ruggedized and conductioncooled versions available

General Information

The Flexor[®] Model 3312 is a multichannel, high-speed data converter FMC module. It is suitable for connection to HF or IF ports of a communications or radar system. It includes four 250 MHz, 16-bit A/Ds, two 800 MHz, 16-bit D/As, programmable clocking, and multiboard synchronization for support of larger high-channelcount systems.

The 3312 is sold as a complete turnkey data acquisition and signal generation solution as the FlexorSet[™] 5973-312 3U VPX or the FlexorSet 7070-312 PCIe board. For applications that require custom processing, the FlexorSets are ideal for IP development and deployment.

A/D Converters

The front end accepts four analog HF or IF inputs on front-panel connectors with transformer-coupling into two Texas Instruments ADS42LB69 Dual 250 MHz, 16-bit A/D converters.

Performance of the Model 3312

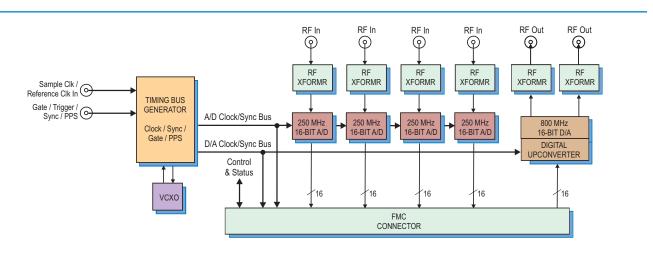
The true performance of the 3312 can be unlocked only when used with the Pentek Model 5973 or Model 7070 FMC carriers. With factory-installed IP, the board-set provides a turnkey data acquisition subsystem eliminating the need to create any FPGA IP. Installed features include flexible A/D acquisition, programmable linked-list DMA engines, and a D/A waveform playback IP module.

A/D Acquisition IP Modules

With the 3312 installed on either the 5973 or the 7070 carrier, the board-set features four A/D acquisition IP modules for easily capturing and moving data. Each module

can receive data from any of the four A/Ds, a test signal generator or from the D/A wave-form playback IP module in loopback mode.

Each IP module can have an associated memory bank on the FMC carrier for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the FMC carrier's PCIe interface.


These powerful linked-list DMA engines are capable of a unique acquisition gatedriven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's task of identifying and executing on the data.

D/A Waveform Playback IP Module

With the 5973 or the 7070, the 3312 features a sophisticated D/A waveform playback IP module. A linked-list controller allows users to easily play back to the D/As waveforms stored in either on-board or offboard host memory.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform. Up to 64 individual link entries can be chained together to create complex waveforms with minimum programming. >

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Model 8267

The Model 8267 is a fullyintegrated development system for Pentek Cobalt, Onyx and Flexor 3U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model Description 3312 4-Channel 250 MHz, 16-bit A/D, 2-Channel 800 MHz. 16-bit D/A -FMC

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options
8267	VPX Development System See 8267 Datasheet for Options

Digital Upconverter and D/A Stage

A TI DAC5688 DUC (digital upconverter) and D/A accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stages.

When operating as a DUC, it interpolates and translates real or complex baseband input signals to any IF center frequency up to 360 MHz. It delivers the output to the 16-bit D/A converter. Analog outputs are through front panel connectors.

If translation is disabled, the DAC5688 acts as a dual interpolating 16-bit D/A with output sampling rates up to 800 MHz. In both modes the DAC5688 provides interpolation factors of 2x, 4x and 8x.

Clocking and Synchronization

Two internal timing buses provide all timing and synchronization required by the A/D and D/A converters. Each includes a clock, sync and gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel coaxial connector. This clock can be used directly by the A/D or D/A sections or divided by a built-in clock synthesizer circuit to provide different A/D and D/A clocks. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this mode, the front coaxial panel connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel LVTTL Gate/Trigger/Sync connector can receive an external timing signal allowing multiple modules to be synchronized thereby creating larger multiboard systems.

ReadyFlow Board Support Package

When used with the 5973 or the 7070, Pentek's ReadyFlow® BSP provides control of all the 3312's hardware and IP-based functions. Ready to run examples and a fully-sourced C library provide a quickstart and powerful platform to create custom applications. ReadyFlow is compatible with Windows and Linux operating systems.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek's GateFlow® FPGA Design Kits include all of the factoryinstalled Virtex-7-based 5973/3312 or 7070/3312 IP modules as documented source code. Using Xilinx Vivado tools, developers can integrate their own IP with

the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek 5973/7070 IP with their own.

FMC Interface

The Model 3312 complies with the VITA 57 High Pin Count FMC specification. The interface provides all data, clocking, synchronization, control and status signals between the 3312 and the FMC carrier.

Model 3312 Specifications

Front Panel Analog Signal Inputs

Input Type: Transformer-coupled, front panel connectors Transformer Type: Coil Craft WBC4-6TLB

Full Scale Input: +4 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz

A/D Converters

Type: Texas Instruments ADS42LB69 Sampling Rate: 10 MHz to 250 MHz Resolution: 16 bits

D/A Converters

Type: Texas Instruments DAC5688 Input Data Rate: 250 MHz max. Output IF: DC to 400 MHz max. Output Sampling Rate: 800 MHz max. with interpolation Resolution: 16 bits

Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel connector Transformer Type: Coil Craft WBC4-6TLB Full Scale Output: +4 dBm into 50 ohms

- 3 dB Passband: 300 kHz to 700 MHz Sample Clock Sources: On-board clock synthesizer generates two clocks: an A/D clock and a D/A clock
- **Clock Synthesizer**

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz) or front panel external clock Synchronization: VCXO can be phaselocked to an external 4 to 180 MHz PLL system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D or D/A clocks

External Clock

Type: Front panel connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

External Trigger Input

Type: Front panel connector, LVTTL **Function:** Programmable functions include: trigger, gate, sync and PPS

Environmental: Level L1 & L2 air cooled, Level L3 conduction-cooled, ruggedized I/O Module Interface: VITA-57.1, High-Pin

Count FMC

Pentek, Inc. One Park Way
 Upper Saddle River
 New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

Features

- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Four 250 MHz 16-bit A/Ds
- One digital upconverter
- Two 800 MHz 16-bit D/As
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- User-configurable gigabit serial interface
- Optional optical Interface for backplane gigabit serial interboard communication
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- Compatible with several VITA standards including: VITA-46, VITA-48, VITA-66.4 and VITA-65 (OpenVPX[™] System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 5973-312 is a member of the Flexor[®] family of high-performance 3U VPX boards based on the Xilinx Virtex-7 FPGA.

As a FlexorSet[™] integrated solution, the Model 3312 FMC is factory-installed on the 5973 FMC carrier. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter and is suitable for connection to the HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes four 250 MHz, 16-bit A/Ds, one digital upconverter, two 800 MHz, 16-bit D/As, and four banks of memory. In addition to supporting PCIe Gen. 3 as a native interface, the Model 5973-312 includes optional copper and optical connections to the Virtex-7 FPGA for custom I/O.

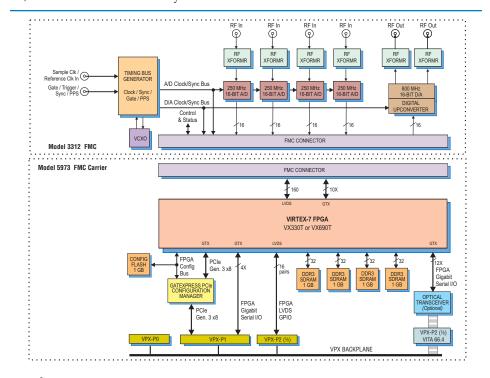
The Flexor Architecture

Based on the proven design of the Pentek Onyx family of Virtex-7 products, the 5973 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

When delivered as an assembled board set, the 5973-312 includes factory-installed

applications ideally matched to the board's analog interfaces. The functions include four A/D acquisition IP modules for simplifying data capture and data transfer.

Each of the four acquisition IP modules contains IP modules for DDR3 SDRAM memories.


The 5973-312 features a sophisticated D/A waveform playback IP module. A linked-list controller allows users to easily play back to the D/As waveforms stored in either on-board or off-board host memory. Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 5973-312 to operate as a turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow[®] FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201-818-5900
Fax: 201-818-5904
Email: info@pentek.com

A/D Acquisition IP Modules

The 5973-312 features four A/D Acquisition IP Modules for easy capture and data moving. Each IP module can receive data from any of the four A/Ds, a test signal generator or from the D/A Waveform Playback IP Module in loopback mode.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for moving A/D data through the PCIe interface.

These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can can automatically construct metadata packets containing A/D channel ID, a sample accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The 5973-312 factory-installed functions include a sophisticated D/A Waveform Playback IP module. A linked-list controller allows users to easily play back waveforms stored in either on-board or off-board host memory to the dual D/As.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform. Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

► Xilinx Virtex-7 FPGA

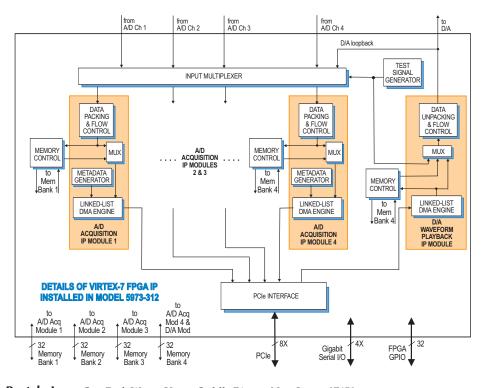
The 5973-312 can be optionally populated with one of two Virtex-7 FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

A 4X connection between the FPGA and the VPX P1 connector supports gigabit serial protocols.

Option -104 provides 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -110 supports the VITA-66.4 standard that provides 12 optical duplex lanes to the backplane. With the installation of a serial protocol, the VITA-66.4 interface enables gigabit backplane communications between boards independent of the PCIe interface.

GateXpress for FPGA Configuration


The Flexor architecture includes GateXpress[®], a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power-up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on many systems.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power-up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first option to load is an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT. >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

PCI Express Interface

The Model 5973-312 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Memory Resources

The 5973-312 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

Model 8267

The Model 8267 is a fullyintegrated development system for Pentek Cobalt, Onyx and Flexor 3U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model Description 5973-312 4-Channel 250 MHz A/D, 2-Channel 800 MHz 16-bit D/A with Virtex-7 FPGA - 3U VPX

Options:

-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to VPX
	P2
-110	VITA-66.4 12X optical interface

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System See 8267 Datasheet for Options

4-Ch. 250 MHz 16-bit A/D, 2-Ch. 800 MHz 16-bit D/A - 3U VPX

➤ In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts four analog HF or IF inputs on front-panel connectors with transformer-coupling into two Texas Instruments ADS42LB69 dual 250 MHz, 16-bit A/D converters.

Digital Upconverter and D/A Stage

A TI DAC5688 DUC and D/A accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stages.

When operating as a DUC, it interpolates and translates real or complex baseband input signals to any IF center frequency up to 360 MHz. It delivers the output to the 16-bit D/A converter. Analog outputs are through front panel connectors.

If translation is disabled, the DAC5688 acts as a dual interpolating 16-bit D/A with output sampling rates up to 800 MHz. In both modes the DAC5688 provides interpolation factors of 2x, 4x and 8x.

Clocking and Synchronization

Two internal timing buses provide all timing and synchronization required by the A/D and D/A converters. Each includes a clock, sync and gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel coaxial connector. This clock can be used directly by the A/D or D/A sections or divided by a built-in clock synthesizer circuit to provide different A/D and D/A clocks. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO. In this mode, the front coaxial panel connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel LVTTL Gate/Trigger/Sync connector can receive an external timing signal to synchronize multiple modules.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel connectors

Transformer Type: Coil Craft WBC4-6TLB **Full Scale Input:** +4 dBm into 50 ohms **3 dB Passband:** 300 kHz to 700 MHz **A/D Converters**

Type: Texas Instruments ADS42LB69 **Sampling Rate:** 10 MHz to 250 MHz **Resolution:** 16 bits

D/A Converters

Type: Texas Instruments DAC5688 **Input Data Rate:** 250 MHz max. **Output IF:** DC to 400 MHz max. **Output Sampling Rate:** 800 MHz max. with interpolation **Resolution:** 16 bits

Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel connector Transformer Type: Coil Craft WBC4-6TLB Full Scale Output: +4 dBm into 50 ohms

3 dB Passband: 300 kHz to 700 MHz **Sample Clock Sources:** On-board clock synthesizer generates two clocks: an A/D clock and a D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8 or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

External Trigger Input

Type: Front panel connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Option -076: Xilinx Virtex-7 XC7VX690T-2

Custom FPGA I/O

4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols.

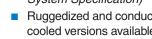
Parallel (Option -104): 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Optical (Option -110):** VITA-66.4, 12X duplex lanes

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental: Level L1 & L2 air-cooled,


Level L3 conduction-cooled, ruggedized **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

• Model 5983-313

Features

- VITA-57.4 HSPC FMC+ site offers access to a wide range of possible I/O
- Supports Xilinx Kintex UltraScale FPGA
- Four 250 MHz 16-bit A/Ds
- Four multiband DDCs
- One digital upconverter
- Two 800 MHz 16-bit D/As
- Extended Interpolation
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- User-configurable gigabit serial interface
- Optional optical Interface for backplane gigabit serial interboard communication
- LVDS connections to the Kintex UltraScale FPGA for custom I/O and synchronization
- Compatible with several VITA standards including: VITA-46, VITA-48, VITA-66.4 and VITA-65 (OpenVPX™ System Specification)
- Ruggedized and conductioncooled versions available

4-Ch. 250 MHz 16-bit A/D with DDCs, 2-Ch. 800 MHz 16-bit D/A with DUC and Extended Interpolation - 3UVPX

General Information

Model 5983 is a member of the JadeFXTM family of high-performance 3U VPX baseboards with a Xilinx Kintex UltraScale FPGA and an available FMC I/O slot.

As an integrated solution, the Model 5983-313 FlexorSet[™] combines the Model 5983 and the Model 3313 Flexor® FMC as a factory-installed set. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter with programmable DDCs and is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA-processing IP.

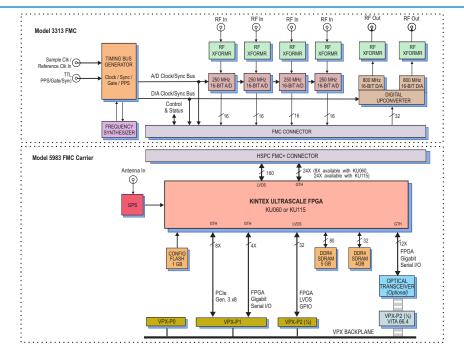
In addition to the Gen. 3 x8 PCIe interface, the 5983 architecture includes an optional built-in gigabit serial optical interface. Up to 12 high-speed duplex optical lanes are available on a VITA-66.4 connector. With the installation of a serial protocol in the FPGA, this interface enables a high-bandwidth connection between 5983s mounted in the same chassis or even over extended distances between them.

The Flexor Architecture

Based on the proven design of the Pentek Jade family of Kintex products, the 5983 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factory-installed functions

that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

When delivered as an assembled board set, the 5983-313 includes factory-installed applications ideally matched to the board's analog interfaces. The functions include four A/D acquisition IP modules for simplifying data capture and data transfer. Each of the four acquisition IP modules contains a powerful DDC core.


The 5983-313 features a sophisticated D/A waveform generator IP module. A linked-list controller allows users to easily record to the D/As waveforms stored in either on-board or off-board host memory. Parameters including length of waveform, delay from trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 5983-313 to operate as a turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. The Pentek Navigator FPGA Design Kits include the board's entire FPGA design as a block diagram that can be edited in Xilinx's Vivado tool suite. In addition, all source code and complete IP core documentation is included. Developers can >

Pentek, Inc. One Park Way
 Upper Saddle River
 New Jersey 07458 Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

www.pentek.com

A/D Acquisition IP Modules

The 5983-313 features four A/D Acquisition IP Modules for easy capture and data moving. Each IP module can receive data from any of the four A/Ds, a test signal generator or from the D/A Waveform Generator IP Module in loopback mode.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for moving A/D data through the PCIe interface.

These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Generator IP Module

The 5983-313 factory-installed functions include a sophisticated D/A Waveform Generator IP module. A linked-list controller allows users to easily record waveforms stored in either onboard or off-board host memory to the dual D/As.

Parameters including length of waveform, delay from trigger, waveform repetition, etc. can be programmed for each waveform. Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

DDC IP Cores

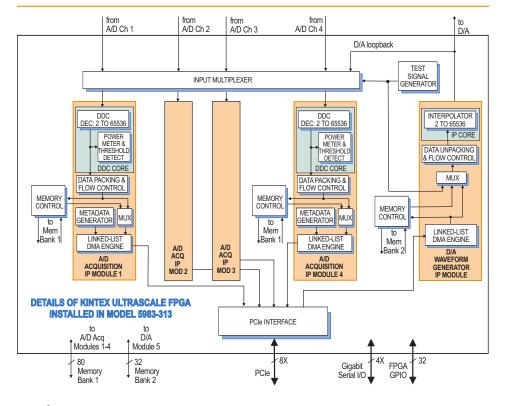
Within each A/D Acquisition IP Module is a powerful DDC IP core. Because of the flexible input routing of the A/D Acquisition IP Modules, many different configurations can be achieved including one A/D driving all four DDCs or each of the four A/Ds driving its own DDC.

Each DDC has an independent 32-bit tuning frequency setting that ranges from DC to f_s , where f_s is the A/D sampling frequency. Each DDC can have its own unique decimation setting, supporting as many as four different output bandwidths for the board. Decimations can be programmed from 2 to 65,536 providing a wide range to satisfy most applications.

The decimating filter for each DDC accepts a unique set of user-supplied 18-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8*f_s/N$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 24-bit I + 24-bit Q or 16-bit I + 16-bit Q samples at a rate of f_s/N .

Each DDC core contains programmable I & Q phase and gain adjustments followed by a power meter that continuously measures the individual average power output. The time constant of the averaging interval for each meter is programmable up to 8K samples. The power meters present average power measurements for each DDC core output in easy-to-read registers.

In addition, each DDC core includes a threshold detector to automatically send an interrupt to the processor if the average power level of any DDC core falls below or exceeds a programmable threshold.


> integrate their own IP along with the Pentek factory-installed functions or use the Navigator kit to completely replace the Pentek IP with their own.

Xilinx Kintex UltraScale FPGA

The 5983-313 can be optionally populated with one of two Kintex UltraScale FPGAs to match the specific requirements of the processing task. Supported FPGAs are KU060 or KU115. The KU115 features 5520 DSP48E2 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost KU060 can be installed.

Sixteen pairs of LVDS connections are optionally provided between the FPGA and the VPX P2 connector for custom I/O. For applications requiring custom gigabit links, a 4X connection is supported between the FPGA and the VPX P1 connector to support serial protocols. >

www.pentek.com

4-Ch. 250 MHz 16-bit A/D with DDCs, 2-Ch. 800 MHz 16-bit D/A with DUC and Extended Interpolation - 3U VPX

➤ The 5983-313 supports the VITA-66.4 standard, that provides up to 12 optical duplex lanes to the backplane. With the installation of a serial protocol, the VITA-66.4 interface enables gigabit backplane communications between boards independent of the PCIe interface.

GPS

An optional GPS receiver provides time and position information to the FPGA. This information can be used for precise data tagging.

A/D Converter Stage

The front end accepts four analog HF or IF inputs on front-panel connectors with transformer-coupling into two Texas Instruments ADS42LB69 dual 250 MHz, 16-bit A/D converters.

Digital Upconverter and D/A Stage

A TI DAC5688 DUC and D/A accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stages.

When operating as a DUC, it interpolates and translates real or complex baseband input signals to any IF center frequency from DC to the sampling frequency. It delivers the output to the 16-bit D/A converter. Analog outputs are through front panel connectors.

If translation is disabled, the DAC5688 acts as a dual interpolating 16-bit D/A with output sampling rates up to 800 MHz. In both modes the DAC5688 provides interpolation factors of 2x, 4x and 8x.

In addition, the FPGA-based interpolator provides a range of 2x to 65536x in two stages of 2x to 256x. Including the DAC5688 interpolation, the overall available interpolation range equals 2x to 524,288x.

Clocking and Synchronization

Two internal timing buses provide all timing and synchronization required by the A/D and D/A converters. Each includes a clock, sync and gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel coaxial connector.

This clock can be used directly by the A/D or D/A sections or divided by a built-in clock synthesizer circuit to provide different A/D and D/A clocks. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO. In this mode, the front-panel coaxial connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel LVTTL Gate/Trigger/Sync connector can receive an external timing signal to synchronize multiple modules.

PCI Express Interface

The Model 5983-313 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Memory Resources

The 5983-313 architecture supports two independent DDR3 SDRAM memory banks. The banks are four and five gigabytes each and are part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

Specifications

- Front Panel Analog Signal Inputs
 - Input Type: Transformer-coupled, front panel connectors
 - Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +4 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz
- A/D Converters

Type: Texas Instruments ADS42LB69 **Sampling Rate:** 10 MHz to 250 MHz **Resolution:** 16 bits

4-Channel Digital Downconverter Decimation Range: 2x to 65,536x in two stages of 2x to 256x

LO Tuning Freq. Resolution: 32 bits, 0 to *f*s

LO SFDR: >120 dB

Phase Offset Resolution: 32 bits, 0 to 360 degrees

FIR Filter: 18-bit user-programmable coefficients, 24-bit output

Default Filter Set: 80% bandwidth,

<0.3 dB passband ripple, >100 dB

stopband attenuation Phase Shift Coefficients: I & Q with

16-bit resolution

Gain Coefficients: 16-bit resolution >

4-Ch. 250 MHz 16-bit A/D with DDCs, 2-Ch. 800 MHz 16-bit D/A with DUC and Extended Interpolation - 3U VPX

SPARK Development Systems

The SPARK Development Systems are fully-integrated platforms for Pentek Cobalt, Onyx, Jade and Flexor boards. Available in a PCIe rackmount (Model 8266), a 3U VPX chassis (Model 8267) or a 6U VPX chassis (Model 8264), they were created to save engineers and system integrators the time and expense associated with building and testing a development system. Each SPARK system is delivered with the Pentek board(s) and required software installed and equipped with sufficient cooling and power to ensure optimum performance.

Ordering Information

Model Description

5983-313 4-Channel 250 MHz 16-bit A/D, with DDCs, 2-Channel 800 MHz 16-bit D/A with DUC, Extended Interpolation and Kintex Ultra-Scale FPGA - 3U VPX

Options:

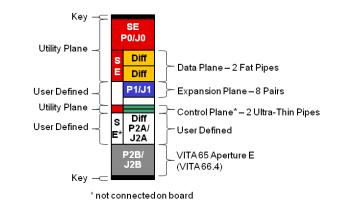
-087	XCKU115-2 FPGA
-110	VITA-66.4 12X optical
	interface
-180	GPS Support
-702	Air cooled, Level L2
-763	Conduction-cooled, Level L3
	Level Lo

Contact Pentek for availability of rugged and conduction-cooled versions

Specifications, Continued **D/A Converters Type:** Texas Instruments DAC5688 Input Data Rate: 250 MHz max. Output IF: DC to 400 MHz max. Output Sampling Rate: 800 MHz max. with interpolation Resolution: 16 bits **Digital Interpolator** Interpolation Range: 2x to 65,536x in two stages of 2x to 256x **Total Interpolation Range** D/A and digital combined: 2x to 524,288x Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel connector Transformer Type: Coil Craft WBC4-6TLB Full Scale Output: +4 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz Sample Clock Sources: On-board clock synthesizer generates two clocks: an A/D clock and a D/A clock **Clock Synthesizer** Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system

reference, typically 10 MHz **Clock Dividers**: External clock or VCXO can be divided by 1, 2, 4, 8 or 16 for the A/D clock

External Clock


Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

External Trigger Input

Type: Front panel connector **Function:** Programmable functions include: trigger, gate, sync and PPS Field Programmable Gate Array Standard: Xilinx Kintex UltraScale XCKU060-2 **Optional:** Xilinx Kintex UltraScale XCKU115-2 **Custom FPGA I/O** Serial: 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. Parallel: 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O Optical (Option -110): VITA-66.4, 12X duplex lanes Memory Type: DDR4 SDRAM Size: Two banks, one 4 GB and one 5 GB Speed: 1200 MHz (2400 MHz DDR) **PCI-Express Interface** PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental Standard: L0 (air cooled) **Operating Temp:** 0° to 50° C **Storage Temp:** –20° to 90° C Relative Humidity: 0 to 95%, noncondensing Option -702: L2 (air cooled) **Operating Temp:** –20° to 65° C **Storage Temp:** -40° to 100° C Relative Humidity: 0 to 95%, noncondensing Option -763: L3 (conduction cooled) **Operating Temp:** –40° to 70° C Storage Temp: –50° to 100° C Relative Humidity: 0 to 95%, noncondensing

Size: 3.937 in. x6.717 in. (100 mm x 170.6 mm) OpenVPX Compatibility: The Model 5983-313 is compatibile with the following

module profile, as defined by the VITA 65 Open-VPX Specification: SLT3-PAY-2F1F2U1E-14.6.6-1

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com
www.pentek.com

Features

- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Four 250 MHz 16-bit A/Ds
- One digital upconverter
- Two 800 MHz 16-bit D/As
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional optical Interface for gigabit serial interboard communication
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

General Information

Model 7070-312 is a member of the Flexor[®] family of high-performance PCIe boards based on the Xilinx Virtex-7 FPGA.

As a FlexorSet[™] integrated solution, the Model 3312 FMC is factory-installed on the 7070 FMC carrier. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter and is suitable for connection to the HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes four 250 MHz, 16-bit A/Ds, one digital upconverter, two 800 MHz, 16-bit D/As, and four banks of memory. In addition to supporting PCIe Gen. 3 as a native interface, the Model 7070-312 includes optional copper and optical connections to the Virtex-7 FPGA for custom I/O.

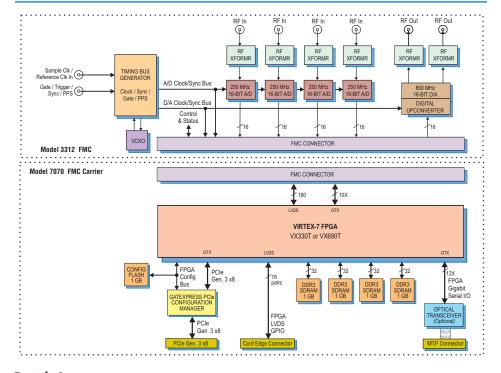
The Flexor Architecture

Based on the proven design of the Pentek Onyx family of Virtex-7 products, the 7070 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

When delivered as an assembled board set, the 7070-312 includes factory-installed

applications ideally matched to the board's analog interfaces. The functions include four A/D acquisition IP modules for simplifying data capture and data transfer.

Each of the four acquisition IP modules contains IP modules for DDR3 SDRAM memories.


The 7070-312 features a sophisticated D/A waveform playback IP module. A linked-list controller allows users to easily play back to the D/As waveforms stored in either on-board or off-board host memory. Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 7070-312 to operate as a turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow[®] FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

www.pentek.com

FlexorSet Model 7070-312

A/D Acquisition IP Modules

The 7070-312 features four A/D Acquisition IP Modules for easy capture and data moving. Each IP module can receive data from any of the four A/Ds, a test signal generator or from the D/A Waveform Playback IP Module in loopback mode.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for moving A/D data through the PCIe interface.

These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can can automatically construct metadata packets containing A/D channel ID, a sample accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The 7070-312 factory-installed functions include a sophisticated D/A Waveform Playback IP module. A linked-list controller allows users to easily play back waveforms stored in either on-board or off-board host memory to the dual D/As.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform. Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

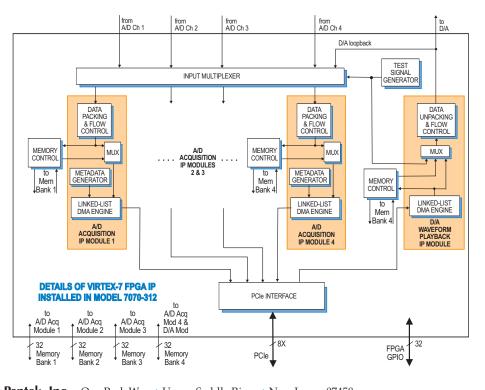
► Xilinx Virtex-7 FPGA

The 7070-312 can be optionally populated with one of two Virtex-7 FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX30T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX30T can be installed.

Option -104 provides 16 pairs of LVDS connections between the FPGA and a cardedge connector for custom I/O.

Option -110: For applications requiring optical gigabit links, up to 12 high-speed, full-duplex FPGA GTX lanes driven via an optical transceiver support serial protocols. A 12-lane MTPoptical connector is presented on the PCIe slot panel.

GateXpress for FPGA Configuration


The Flexor architecture includes GateXpress[®], a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power-up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on many systems. The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power-up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first option to load is an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201-818-5900
Fax: 201-818-5904
Email: info@pentek.com

FlexorSet Model 7070-312

4-Ch. 250 MHz 16-bit A/D, 2-Ch. 800 MHz 16-bit D/A - x8 PCIe

PCI Express Interface

The Model 7070-312 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Memory Resources

The 7070-312 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model Description

7070-312 4-Channel 250 MHz A/D, 2-Channel 800 MHz 16bit D/A with Virtex-7 FPGA - x8 PCIe

Options:

-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to card-
	edge connector
-110	12x gigabit serial optical
	I/O with XC7VX690T
	FPGA, 4x w. XC7VX330T

Model Description 8266 PC Development System See 8266 Datasheet for Options

➤ loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts four analog HF or IF inputs on front-panel connectors with transformer-coupling into two Texas Instruments ADS42LB69 dual 250 MHz, 16-bit A/D converters.

Digital Upconverter and D/A Stage

A TI DAC5688 DUC and D/A accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stages.

When operating as a DUC, it interpolates and translates real or complex baseband input signals to any IF center frequency up to 360 MHz. It delivers the output to the 16-bit D/A converter. Analog outputs are through front panel connectors.

If translation is disabled, the DAC5688 acts as a dual interpolating 16-bit D/A with output sampling rates up to 800 MHz. In both modes the DAC5688 provides interpolation factors of 2x, 4x and 8x.

Clocking and Synchronization

Two internal timing buses provide all timing and synchronization required by the A/D and D/A converters. Each includes a clock, sync and gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel coaxial connector. This clock can be used directly by the A/D or D/A sections or divided by a built-in clock synthesizer circuit to provide different A/D and D/A clocks. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO. In this mode, the front coaxial panel connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel LVTTL Gate/Trigger/Sync connector can receive an external timing signal to synchronize multiple modules.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +4 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz

A/D Converters

Type: Texas Instruments ADS42LB69 **Sampling Rate:** 10 MHz to 250 MHz **Resolution:** 16 bits

D/A Converters

Type: Texas Instruments DAC5688 Input Data Rate: 250 MHz max. Output IF: DC to 400 MHz max. Output Sampling Rate: 800 MHz max. with interpolation Resolution: 16 bits

Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel connector Transformer Type: Coil Craft WBC4-6TLB Full Scale Output: +4 dBm into 50 ohms

3 dB Passband: 300 kHz to 700 MHz **Sample Clock Sources:** On-board clock synthesizer generates two clocks: an A/D clock and a D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8 or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

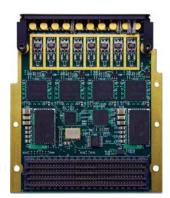
External Trigger Input Type: Front panel connector Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Option -076: Xilinx Virtex-7 XC7VX690T-2

Custom FPGA I/O

Parallel (Option -104): 16 pairs of LVDS connections between the FPGA and a card-edge connector for custom I/O **Optical (Option -110):** 12x gigabit serial optical I/O with XC7VX690T FPGA, 4x with XC7VX330T

Memory


Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental: Level L1 & L2 air-cooled, Size: 3.937 in. x6.717 in. (100 mm x 170.6 mm)

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201·818·5900 Fax: 201·818·5904 Email: info@pentek.com

Features

- Sold as the:
 - FlexorSet Model 5973-316
 - FlexorSet Model 7070-316
- Eight 250 MHz, 16-bit A/Ds
- On-board timing bus generator with multiboard synchronization
- Sample clock synchronization to an external system reference
- VITA 57 FMC compatible
- Complete radar or software radio interface solution when combined with the Model 5973 3U OpenVPX or Model 7070 PCIe Virtex-7 FMC carrier
- Ruggedized and conductioncooled versions available

General Information

The Flexor[®] Model 3316 is a multichannel, high-speed data converter FMC module. It is suitable for connection to HF or IF ports of a communications or radar system. It includes eight 250 MHz, 16-bit A/Ds, programmable clocking, and multiboard synchronization for support of larger high-channelcount systems.

The 3316 is sold as a complete turnkey data acquisition solution as the FlexorSet[™] 5973-316 3U VPX or the FlexorSet 7070-316 PCIe board. For applications that require custom processing, the FlexorSets are ideal for IP development and deployment.

A/D Converters

The front end accepts eight analog HF or IF inputs on front-panel connectors with transformer-coupling into four Texas Instruments ADS42LB69 Dual 250 MHz, 16-bit A/D converters.

Performance of the Model 3316

The true performance of the 3316 can be unlocked only when used with the Pentek Model 5973 or Model 7070 FMC carriers. With factory-installed IP, the board-set provides a turnkey data acquisition subsystem eliminating the need to create any FPGA IP. Installed features include flexible A/D acquisition, programmable linked-list DMA engines, and a metadata packet creator.


A/D Acquisition IP Modules

With the 3316 installed on either the 5973 or the 7070 FMC carrier, the board-set features eight A/D Acquisition IP modules for easily capturing and moving data. Each module can receive data from any of the eight A/Ds, or a test signal generator.

Each IP module can have an associated memory bank on the Pentek FMC carrier for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the FMC carrier's PCIe interface.

These powerful linked-list DMA engines are capable of a unique acquisition gate driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data-length information. These actions simplify the host processor's task of identifying and executing on the data.

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Model 8267

The Model 8267 is a fullyintegrated development system for Pentek Cobalt, Onyx and Flexor 3U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
3316	8-Channel 250 MHz

3316	8-Channel 250 MHz,
	16-bit A/D - FMC

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System
	See 8266 Datasheet for
	Options
8267	VPX Development System
	See 8267 Datasheet for
	Options

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. Included are a clock, sync and gate or trigger signals. An on-board clock generator can receive an external sample clock from the front-panel coaxial connector. This clock can be used directly by the A/D section or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this mode, the front-panel coaxial connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel Gate/Trigger/PPS connector can receive an external timing signal allowing multiple modules to be synchronized to create larger multiboard systems.

ReadyFlow Board Support Package

When used with the 5973 or the 7070, Pentek's ReadyFlow[®] BSP provides control of all the 3316's hardware and IP-based functions. Ready to run examples and a fully-sourced C library provide a quickstart and powerful platform to create custom applications. ReadyFlow is compatible with Windows and Linux operating systems.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek's GateFlow[®] FPGA Design Kits include all of the factoryinstalled Virtex-7-based 5973/3316 or 7070/3316 IP modules as documented source code. Using Xilinx Vivado tools, developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek 5973/7070 IP with their own.

FMC Interface

The Model 3316 complies with the VITA 57 High Pin Count FMC specification. The interface provides all data, clocking, synchronization, control and status signals between the 3316 and the FMC carrier.

Model 3316 Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +4 dBm into 50 ohms

3 dB Passband: 300 kHz to 700 MHz

A/D Converters

Type: Texas Instruments ADS42LB69 Sampling Rate: 10 MHz to 250 MHz Resolution: 16 bits

Sample Clock Source: On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz) or front-panel external clock Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16

External Clock

Type: Front panel connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

External Trigger Input

Type: Front panel connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Environmental: Level L1 & L2 air-cooled, Level L3 conduction-cooled, ruggedized

I/O Module Interface: VITA-57.1, High-Pin Count FMC

Features

- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Eight 250 MHz 16-bit A/Ds
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- User-configurable gigabit serial interface
- Optional optical Interface for backplane gigabit serial interboard communication
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- Compatible with several VITA standards including: VITA-46, VITA-48, VITA-66.4 and VITA-65 (OpenVPXTM System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 5973-316 is a member of the Flexor[®] family of high-performance 3U VPX boards based on the Xilinx Virtex-7 FPGA.

As a FlexorSet[™] integrated solution, the Model 3316 FMC is factory-installed on the 5973 FMC carrier. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter and is suitable for connection to the HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

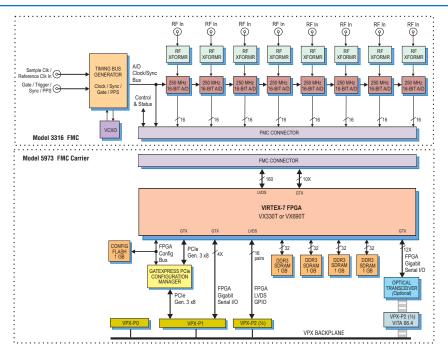
It includes eight A/Ds and four banks of memory. In addition to supporting PCIe Gen. 3 as a native interface, the Model 5973-316 includes optional copper and optical connections to the Virtex-7 FPGA for custom I/O.

The Flexor Architecture

Based on the proven design of the Pentek Onyx family of Virtex-7 products, the 5973 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

When delivered as an assembled board set, the 5973-316 includes factory-installed applications ideally matched to the board's analog interfaces. The functions include eight A/D acquisition IP modules for simplifying data capture and data transfer.

Each of the eight acquisition IP modules contains IP modules for DDR3 SDRAM memories. A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 5973-316 to operate as a turnkey solution without the need to develop any FPGA IP.


Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow[®] FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The 5973-316 can be optionally populated with one of two Virtex-7 FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

A 4X connection between the FPGA and the VPX P1 connector supports gigabit serial protocols. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201-818-5900
Fax: 201-818-5904
Email: info@pentek.com

A/D Acquisition IP Modules

The 5973-316 features eight A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the eight A/Ds or a test signal generator.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data. Option -104 provides 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

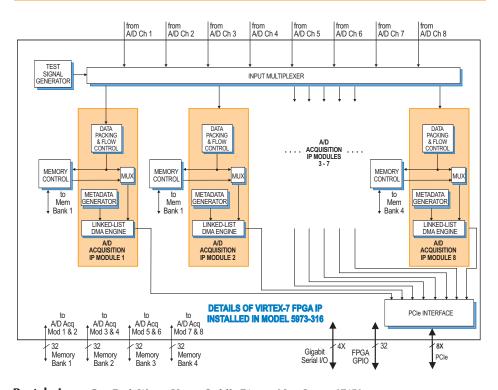
Option -110 supports the VITA-66.4 standard that provides 12 optical duplex lanes to the backplane. With the installation of a serial protocol, the VITA-66.4 interface enables gigabit backplane communications between boards independent of the PCIe interface.

GateXpress for FPGA Configuration

The Flexor architecture includes GateXpress[®], a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power-up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on many systems.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power-up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first option to load is an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.


The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts eight analog HF or IF inputs on front-panel connectors with transformer-coupling into four Texas Instruments ADS42LB69 dual 250 MHz, 16-bit A/D converters. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

The Model 8267 is a fullyintegrated development system for Pentek Cobalt, Onyx and Flexor 3U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model Description 5973-316 8-Channel 250 MHz A/D

with Virtex-7 FPGA - 3U VPX

Options:

-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to VPX P2
-110	VITA-66.4 12X optical interface

Contact Pentek for availability of rugged and conduction-cooled versions

ModelDescription8267VPX Development System
See 8267 Datasheet for
Options

PENTEK

► Memory Resources

The 5973-316 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. Included are a clock, sync and gate or trigger signals. An on-board clock generator can receive an external sample clock from the front-panel coaxial connector. This clock can be used directly by the A/D section or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this mode, the front-panel coaxial connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel Gate/Trigger/PPS connector can receive an external timing signal allowing multiple boards to be synchronized to create larger multiboard systems.

PCI Express Interface

The Model 5973-316 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +4 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS42LB69

Sampling Rate: 10 MHz to 250 MHz Resolution: 16 bits

Sample Clock Sources: On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8 or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

External Trigger Input

Type: Front panel connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Option -076: Xilinx Virtex-7 XC7VX690T-2

Custom FPGA I/O

4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols.

Parallel (Option -104): 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Optical (Option -110):** VITA-66.4, 12X duplex lanes

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR) PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental: Level L1 & L2 air-cooled, Level L3 conduction-cooled, ruggedized Size: 3.937 in. x6.717 in. (100 mm x 170.6 mm)

Features

- VITA-57.4 HSPC FMC+ site offers access to a wide range of possible I/O
- Supports Xilinx Kintex UltraScale FPGA
- Eight 250 MHz 16-bit A/Ds
- Eight multiband DDCs
- 4 GB and 5 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- User-configurable gigabit serial interface
- Optional optical Interface for backplane gigabit serial interboard communication
- LVDS connections to the Kintex UltraScale FPGA for custom I/O and synchronization
- Compatible with several VITA standards including: VITA-46, VITA-48, VITA-66.4 and VITA-65 (OpenVPX[™] System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 5983 is a member of the JadeFX[™] family of high-performance 3U VPX baseboards with a Xilinx Kintex UltraScale FPGA and an available FMC I/O slot.

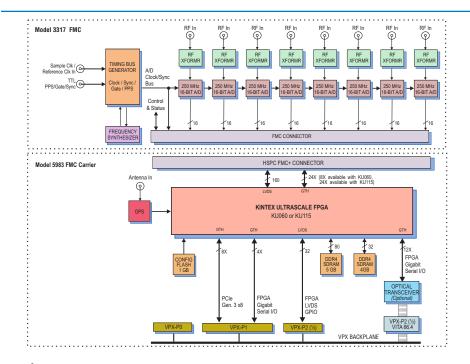
As an integrated solution, the Model 5983-317 FlexorSet[™] combines the Model 5983 and the Model 3317 Flexor[®] FMC as a factory-installed set. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter with programmable DDCs (Digital Downconverters) and is suitable for connection to the HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

In addition to the Gen. 3 x8 PCIe interface, the 5983 architecture includes an optional built-in gigabit serial optical interface. Up to 12 high-speed duplex optical lanes are available on a VITA-66.4 connector. With the installation of a serial protocol in the FPGA, this interface enables a high-bandwidth connection between 5983s mounted in the same chassis or even over extended distances between them.

The Flexor Architecture

Based on the proven design of the Pentek Jade family of Kintex products, the 5983 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.


When delivered as an assembled board set, the 5983-317 includes factory-installed applications ideally matched to the board's analog interfaces. The functions include eight A/D acquisition IP modules for simplifying data capture and data transfer.

Each of the eight acquisition IP modules contains a powerful, programmable DDC IP core. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 5983-317 to operate as a turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. The Pentek Navigator FPGA Design Kits include the board's entire FPGA design as a block diagram that can be edited in Xilinx's Vivado tool suite. In addition, all source code and complete IP core documentation is included.

Option -110 supports the VITA-66.4 standard that provides 12 optical duplex lanes to the back-plane. With the installation of a serial protocol, the VITA-66.4 interface enables gigabit back-plane communications between boards independent of the PCIe interface. >

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201-818-5900

Fax: 201-818-5904

Email: info@pentek.com

www.pentek.com

A/D Acquisition IP Modules

The 5983-317 features eight A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from its corresponding A/D or a test signal generator.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

DDC IP Cores

Within each A/D Acquisition IP Module is a powerful DDC IP core. Because of the flexible input routing of the A/D Acquisition IP Modules, many different configurations can be achieved including one A/D driving all eight DDCs or each of the eight A/Ds driving its own DDC.

Each DDC has an independent 32-bit tuning frequency setting that ranges from DC to f_{sr} where f_s is the A/D sampling frequency. Each DDC can have its own unique decimation setting, supporting as many as four different output bandwidths for the board. Decimations can be programmed from 2 to 32,768 providing a wide range to satisfy most applications.

The decimating filter for each DDC accepts a unique set of user-supplied 18-bit coefficients. The 80% default filters deliver an output bandwidth of $0.8*f_s/N$, where N is the decimation setting. The rejection of adjacent-band components within the 80% output bandwidth is better than 100 dB. Each DDC delivers a complex output stream consisting of 24-bit I + 24-bit Q or 16-bit I + 16-bit Q samples at a rate of f_s/N .

Each DDC core contains programmable I & Q phase and gain adjustments followed by a power meter that continuously measures the individual average power output. The time constant of the averaging interval for each meter is programmable up to 8 K samples. The power meters present average power measurements for each DDC core output in easy-to-read registers.

In addition, each DDC core includes a threshold detector to automatically send an interrupt to the processor if the average power level of any DDC core falls below or exceeds a programmable threshold.

► A/D Converter Stage

The front end accepts eight analog HF or IF inputs on front-panel connectors with transformer-coupling into four Texas Instruments ADS42LB69 Dual 250 MHz, 16-bit A/D converters.

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. Included are a clock, sync and gate or trigger signals. An on-board clock generator can receive an external sample clock from the front-panel coaxial connector. This clock can be used directly by the A/D section or divided by a built-in clock synthesizer circuit.

In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this mode, the front-panel coaxial connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel Gate/Trigger/PPS connector can receive an external timing signal allowing multiple boards to be synchronized to create larger multiboard systems.

Memory Resources

The 5983-317 architecture supports two independent DDR3 SDRAM memory banks. These banks are 4 GB and 5 G deep and are an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

PCI Express Interface

The Model 5983-317 includes an industry-standard interface fully compliant with PCI e Gen. 1, 2 and 3 bus specifications. PCIe links up to x8, are supported. >

 Pentek, Inc.
 One Park Way & Upper Saddle River & New Jersey 07458
 www.pentek.com

 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com
 www.pentek.com

External Clock

Type: Front panel female MMCX connec-

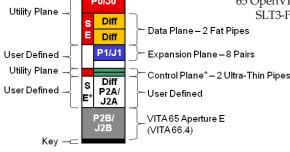
SPARK Development Systems

The SPARK Development Systems are fully-integrated platforms for Pentek Cobalt, Onyx, Jade and Flexor boards. Available in a PCIe rackmount (Model 8266), a 3U VPX chassis (Model 8267) or a 6U VPX chassis (Model 8264), they were created to save engineers and system integrators the time and expense associated with building and testing a development system. Each SPARK system is delivered with the Pentek board(s) and required software installed and equipped with sufficient cooling and power to ensure optimum performance.

Ordering Information

ordering information		
Model	Description	
5983-317	8-Channel 250 MHz A/D with DDCs and Kintex Ultra Scale FPGA - 3U VPX	
Options:		
-087	XCKU115-2 FPGA	
-110	VITA-66.4 12X optical interface	
-180	GPS Support	
-702	Air cooled, Level L2	
-763	Conduction-cooled, Level L3	

Contact Pentek for availability of rugged and conduction-cooled versions


GPS

An optional GPS receiver provides time and position information to the FPGA. This information can be used for precise data tagging.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +4 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS42LB69 Sampling Rate: 10 MHz to 250 MHz Resolution: 16 bits **Digital Downconverters Quantity:** Eight channels Decimation Range: 2x to 32,768x in three stages of 32x LO Tuning Freq. Resolution: 32 bits, 0 to f_{s} LO SFDR: >120 dB Phase Offset Resolution: 32 bits, 0 to 360 degrees FIR Filter: 18-bit coefficients, 24-bit output, user-programmable coefficients Default Filter Set: 80% bandwidth, <0.3 dB passband ripple, >100 dB stopband attenuation Phase Shift Coefficients: I & Q with 16-bit resolution Gain Coefficients: 16-bit resolution Sample Clock Sources: On-board clock synthesizer **Clock Synthesizer** Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock Key SE P0/J0 Utility Plane Diff S Diff P1/J1 User Defined Utility Plane

tor, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference **External Trigger Input** Type: Front panel connector Function: Programmable functions include: trigger, gate, sync and PPS Field Programmable Gate Array Standard: Xilinx Kintex UltraScale XCKU060-2 **Optional:** Xilinx Kintex UltraScale XCKU115-2 **Custom FPGA I/O** Serial: 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. Parallel: 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O Optical (Option -110): VITA-66.4, 12X duplex lanes Memory Type: DDR4 SDRAM Size: Two banks, one 4 GB and one 5 GB Speed: 1200 MHz (2400 MHz DDR) **PCI-Express Interface** PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental Standard: L0 (air cooled) **Operating Temp:** 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, noncondensing Option -702: L2 (air cooled) **Operating Temp:** –20° to 65° C **Storage Temp:** –40° to 100° C Relative Humidity: 0 to 95%, noncondensing Option -763: L3 (conduction cooled) **Operating Temp:** -40° to 70° C Storage Temp: -50° to 100° C Relative Humidity: 0 to 95%, noncondensing Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm) OpenVPX Compatibility: The Model 5983-317 is compatibile with the following module profile, as defined by the VITA 65 OpenVPX Specification: SLT3-PAY-2F1F2U1E-14.6.6-1

* not connected on board

www.pentek.com

FlexorSet Model 7070-316

General Information

Model 7070-316 is a member of the Flexor[®] family of high-performance PCIe boards based on the Xilinx Virtex-7 FPGA.

As a FlexorSet[™] integrated solution, the Model 3316 FMC is factory-installed on the 7070 FMC carrier. The required FPGA IP is installed and the board set is delivered ready for immediate use.

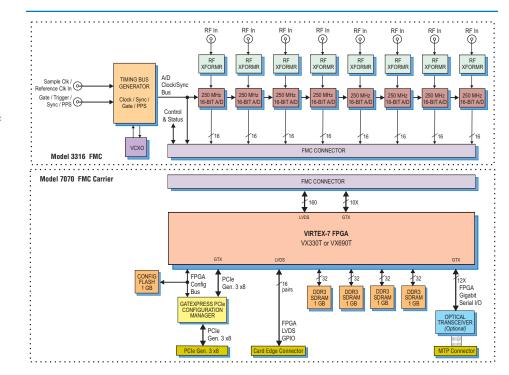
The delivered FlexorSet is a multichannel, high-speed data converter and is suitable for connection to the HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes eight A/Ds and four banks of memory. In addition to supporting PCIe Gen. 3 as a native interface, the Model 7070-316 includes optional copper and optical connections to the Virtex-7 FPGA for custom I/O.

The Flexor Architecture

Based on the proven design of the Pentek Onyx family of Virtex-7 products, the 7070 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

When delivered as an assembled board set, the 7070-316 includes factory-installed applications ideally matched to the board's analog interfaces. The functions include eight A/D acquisition IP modules for simplifying data capture and data transfer.


Each of the eight acquisition IP modules contains IP modules for DDR3 SDRAM memories. A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 7070-316 to operate as a turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow[®] FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The 7070-316 can be optionally populated with one of two Virtex-7 FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

Features

- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Eight 250 MHz 16-bit A/Ds
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional optical Interface for gigabit serial interboard communication
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458 Tel: 201·818·5900 ◆ Fax: 201·818·5904 ◆ Email: info@pentek.com

A/D Acquisition IP Modules

The 7070-316 features eight A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the eight A/Ds or a test signal generator.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data. Option -104 provides 16 pairs of LVDS connections between the FPGA and a cardedge connector for custom I/O.

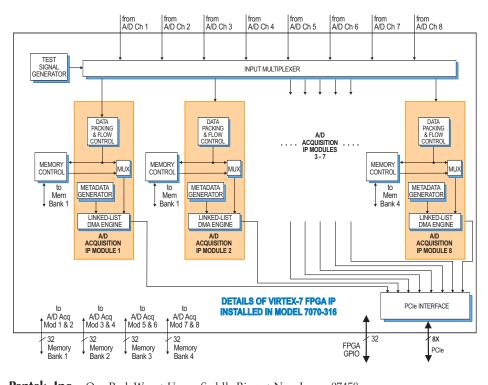
Option -110: For applications requiring optical gigabit links, up to 12 high-speed, full-duplex FPGA GTX lanes driven via an optical transceiver support serial protocols. A 12-lane MTPoptical connector is presented on the PCIe slot panel.

GateXpress for FPGA Configuration

The Flexor architecture includes GateXpress[®], a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power-up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on many systems.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power-up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first option to load is an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.


The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts eight analog HF or IF inputs on front-panel connectors with transformer-coupling into four Texas Instruments ADS42LB69 dual 250 MHz, 16-bit A/D converters. >

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 2018185900 Fax: 2018185904 Email: info@pentek.com

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model 7070-316	Description 8-Channel 250 MHz A/D with Virtex-7 FPGA - x8 PCIe
Options:	
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to card- edge connector
-110	12x gigabit serial optical I/O with XC7VX690T FPGA, 4x w. XC7VX330T

Model Description 8266 PC Development System See 8266 Datasheet for Options

► Memory Resources

The 7070-316 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. Included are a clock, sync and gate or trigger signals. An on-board clock generator can receive an external sample clock from the front-panel coaxial connector. This clock can be used directly by the A/D section or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this mode, the front-panel coaxial connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel Gate/Trigger/PPS connector can receive an external timing signal allowing multiple boards to be synchronized to create larger multiboard systems.

PCI Express Interface

The Model 7070-316 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel connectors Transformer Type: Coil Craft WBC4-6TLB Full Scale Input: +4 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz A/D Converters Type: Texas Instruments ADS42LB69 Sampling Rate: 10 MHz to 250 MHz Resolution: 16 bits Sample Clock Sources: On-board clock

Sample Clock Sources: On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8 or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

External Trigger Input

Type: Front panel connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Option -076: Xilinx Virtex-7 XC7VX690T-2

Custom FPGA I/O

Parallel (Option -104): 16 pairs of LVDS connections between the FPGA and the card-edge connector for custom I/O **Optical (Option -110):** 12x gigabit serial optical I/O with XC7VX690T FPGA, 4x with XC7VX330T

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental: Level L1 & L2 air-cooled, Size: 3.937 in. x6.717 in. (100 mm x 170.6 mm)

Features

- Sold as the:
 - FlexorSet Model 5973-320
 - FlexorSet Model 7070-320
- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Two 3.0 GHz* A/Ds
- Two 2.8 GHz* D/As
- Two digital downconverters
- Two digital upconverters
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- VITA 57 FMC compatible
- Ruggedized and conductioncooled versions available

General Information

The Flexor[™] Model 3320 is a multichannel, high-speed data converter FMC. It is suitable for connection to RF or IF ports of a communications or radar system. It includes two 3.0 GHz A/Ds, two 2.8 GHz D/As, programmable clocking and multiboard synchronization for support of larger highchannel-count systems.

The 3320 is sold as a complete turnkey data acquisition and signal generation solution as the FlexorSet[™] 5973-320 3U VPX or the FlexorSet 7070-320 PCIe board. For applications that require custom processing, the FlexorSets are ideal for IP development and deployment.

Performance of the Model 3320

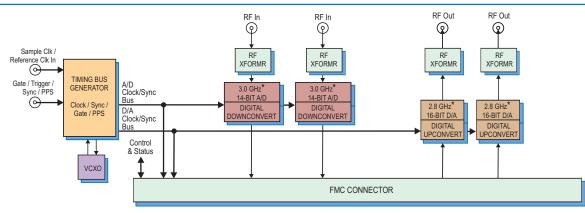
The true performance of the 3320 can be unlocked only when used with the Pentek Model 5973 or Model 7070 FMC carriers. With factory-installed IP, the board-set provides a turnkey data acquisition subsystem eliminating the need to create any FPGA IP. Installed features include flexible A/D acquisition, programmable linked-list DMA engines, and D/A waveform playback IP modules.

Designed to allow users to optimize data conversion rates and modes for specific application requirements, the FlexorSet provides preconfigured conversion profiles. Users can use these profiles which include: digital downconverter and digital upconverter modes, conversion resolution and A/D and D/A sample rates, or program their own profiles. In addition to supporting PCIe Gen. 3 as a native interface, the FlexorSet includes optional copper and optical connections to the Virtex-7 FPGA for custom I/O.

A/D and Digital Downconverter Stage

The front end accepts two analog RF or IF inputs on front-panel connectors with

transformer-coupling into a Texas Instruments ADC32RF45 dual channel A/D. With dual built-in digital downconverters and programmable decimations, the converter serves as an ideal interface for a range of radar, signal intelligence and electronic countermeasures applications. The ADC32RF45 can operate within a range of different conversion speeds and resolutions. See the table on the last page for supported modes.


A/D Acquisition IP Modules

With the 3320 installed on either the 5973 or the 7070 carrier, the board-set features two A/D Acquisition IP Modules for easily capturing and moving data. Each module can receive data from either of the two A/Ds, a test signal generator or from the two D/A waveform playback IP modules in loopback mode.

Each IP module can have an associated memory bank on the FMC carrier for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the FMC carrier's PCIe interface.

These powerful linked-list DMA engines are capable of a unique acquisition gatedriven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data-length information. These actions simplify the host processor's job of identifying and executing on the data.

* See last page for configuration profiles

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt, Onyx and Flexor VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Digital Upconverter and D/A Stage

Two Texas Instruments DAC39J84 D/As accept two baseband real or complex data streams from the FPGA. Each stream then passes through the upconvert, interpolate and D/A stages of the converter.

When operating as DUCs (digital upconverters), the converters interpolate and translate real or complex baseband input signals to a programmable IF center frequency. The data is then delivered to the dual 16-bit D/A converter stages. Analog outputs are through front panel connectors.

If translation is disabled, the D/As act as interpolating 16-bit D/As with output sampling rates up to 2.8 GHz. In both modes the D/As provide interpolation factors from 1x to 16x.

D/A Waveform Playback IP Modules

A Texas Instruments DAC39J84 D/A accepts two baseband real or complex data streams from the FPGA. Each stream then passes through the upconvert, interpolate and D/A stages of the converter.

When operating as DUCs (digital upconverters), the converters interpolate and translate real or complex baseband input signals to a programmable IF center frequency. The data is then delivered to the dual 16-bit D/A converter stages. Analog outputs are through front panel connectors.

If translation is disabled, the D/As act as interpolating 16-bit D/As with output sampling rates up to 2.8 GHz. In both modes the D/As provide programmable interpolation.

Clocking and Synchronization

The 3320 architecture includes a timing bus generator, responsible for providing clocking to the data converters, FPGA and all synchronization circuits. When paired with the 5973 or the 7070, the FlexorSet's built-in functions include setup and support of the timing generator to produce the predefined data conversion profiles. This simplifies operation by allowing users to easily change profiles through software. The timing bus generator has a built-in frequency synthesizer that allows the board to operate without the need for an external sample clock. If users prefer, an external clock can be accepted on a front panel coax connector. In addition, the connector can be programmed to accept a 10 MHz system reference, locking the on-board clock to the reference that enables synchronization across multiple boards.

A front panel LVTTL Gate/Trigger/Sync connector is also included on the board. Users can program the connector's function to operate in one of three modes to match the application requirements.

ReadyFlow Board Support Package

When used with the 5973 or the 7070, Pentek's ReadyFlow[®] BSP provides control of all the 3320's hardware and IP-based functions. Ready to run examples and a fully-sourced C library provide a quick-start and powerful platform to create custom applications. ReadyFlow is compatible with Windows and Linux operating systems.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek's GateFlow[®] FPGA Design Kits include all of the factoryinstalled Virtex-7-based 5973/320 or 7070/320 modules as documented source code. Using Xilinx Vivado tools, developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek 5973/7070 IP with their own.

FMC Interface

The Model 3320 complies with the VITA 57 High-Pin Count FMC specification. The interface provides all data, clocking, synchronization, control and status signals between the 3320 and the FMC carrier. >

► Model 3320 Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel SSMC connectors Transformer Type: Mini-Circuits TC1-1-13M Full Scale Input: +6.6 dBm into 50 ohms 3 dB Passband: 4.5 to 3000 MHz A/D Converters Type: Texas Instruments ADC32RF45 Sampling Rate and Resolution: See table below Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel SSMC connectors Transformer Type: Coil Craft WBC4-14L Full-Scale Output: +4 dBm into 50 ohms 3 dB Passband: 1.5 MHz to 1200 MHz D/A Converters

Type: Texas Instruments DAC39J84 Sampling Rate and Resolution: See table below Sample Clock Sources: Timing bus generator provides A/D and D/A clocks

Timing Bus Generator

Clock Source: Selectable from on-board frequency synthesizer or front panel external clock

Synchronization: Frequency synthesizer can be locked to an external 10 MHz PLL system reference

External Clock

Type: Front panel SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms

External Trigger Input

Type: Front panel SSMC connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Environmental: Level L1 & L2 air-cooled,

- Level L3 conduction-cooled, ruggedized
- Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

Ordering Information

Model Description

5973-320 2-Channel 3.0 GHz A/D, 2-Channel 2.8 GHz D/A with Virtex-7 FPGA - 3U VPX

Options:

- -104 LVDS FPGA I/O to VPX P2
- -110 VITA-66.4 12X (with VX690T), 4X (with VX330T) optical interface

	ct Pentek for availability ed and conduction-cooled versions
8267	VPX Development System

See 8267 Datasheet for Options

7070-320 2-Channel 3.0 GHz A/D, 2-Channel 2.8 GHz D/A with Virtex-7 FPGA - x8 PCIe

Options:

- -076 XC7VX690T-2 FPGA
- -104 LVDS FPGA I/O to card-

edge connector -110 VITA-66.4 12X (with VX690T), 4X (with VX330T) optical interface

8266 PC Development System See 8266 Datasheet for Options

Pre-configured Conversion Profiles* D/A Converter A/D Converter Real / Complex Converter Output Input Data Real / Output Decimation Interpolation Sample Rate Resolution Data Rate** Rate** Complex 3.0 GHz 16 bit 3.0 GB/sec 4 complex n/a n/a n/a 2.8 GHz 2.8 GB/sec 16 bit 4 complex 2 5.6 GB/sec complex 2.8 GHz 16 bit 4 2.8 GB/sec complex 4 2.8 GB/sec complex 2.5 GHz 12 bit 5.0 GB/sec bypass real n/a n/a n/a 2.0 GHz 14 bit bypass 4.0 GB/sec real 2 4.0 GB/sec complex 2.0 GHz 14 bit 4.0 GB/sec 2.0 GB/sec bypass real 2 real 1.0 GHz 14 bit 2.0 GB/sec 2.0 GB/sec bypass real 1 real

* Other modes can be custom-configured by the user

** Per channel, output data rates are subject to maximum PCIe bus speeds of the host computer

Features

- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Two 3.0 GHz* A/Ds
- Two 2.8 GHz* D/As
- Two digital downconverters
- Two digital upconverters
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- User-configurable gigabit serial interface
- Optional optical Interface for gigabit serial interboard communication
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- Compatible with several VITA standards including: VITA-46, VITA-48, VITA-66.4 and VITA-65 (OpenVPX[™] System Specification)
- Ruggedized and conductioncooled versions available

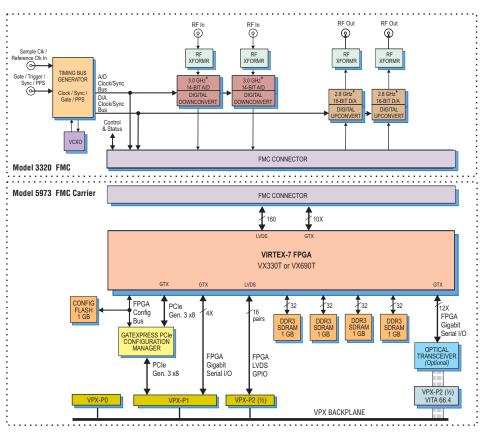
General Information

Model 5973-320 is a member of the Flexor[®] family of high-performance 3U VPX boards based on the Xilinx Virtex-7 FPGA.

As a FlexorSet[™] integrated solution, the Model 3320 FMC is factory-installed on the 5973 FMC carrier. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter and is suitable for connection to the RF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGAprocessing IP.

Designed to allow users to optimize data conversion rates and modes for specific application requirements, the FlexorSet provides preconfigured conversion profiles. Users can use these profiles which include: digital downconverter and digital upconverter modes, conversion resolution and A/D and D/A sample rates, or program their own profiles. In addition to supporting PCIe Gen. 3 as a native interface, the Model 5973-320 includes optional copper and optical connections to the Virtex-7 FPGA for custom I/O.


The Flexor Architecture

Based on the proven design of the Pentek Onyx family of Virtex-7 products, the 5973 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

When delivered as an assembled board set, the 5973-320 includes factory-installed applications ideally matched to the board's analog interfaces. The functions include two A/D acquisition IP modules for simplifying data capture and data transfer.

Each of the acquisition IP modules contains IP modules for DDR3 SDRAM memories.

The 5973-320 features two sophisticated D/A waveform playback IP modules. A linked-list controller allows users to easily play back to the D/As waveforms stored in either on-board or off-board host memory. Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform. >

* See last page for configuration profiles

A/D Acquisition IP Modules

The 5973-320 features two A/D Acquisition IP Modules for easy capture and data moving. Each IP module can receive data from any of the two A/Ds, a test signal generator or from the two D/A Waveform Playback IP modules in loopback mode.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for moving A/D data through the PCIe interface.

These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP **Modules**

The 5973-320 factory-installed functions include two sophisticated D/A Waveform Playback IP modules. A linked-list controller allows users to easily play back waveforms stored in either on-board or off-board host memory to the two D/As.

Parameters including length of waveform, delay from playback trigger, waveform repetition, waveform. Up to 64 individual link entries per module can be chained together to create complex waveforms with a minimum of programming.

Mem

etc. can be programmed for each

▶ In each playback module, up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 5973-320 to operate as a turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

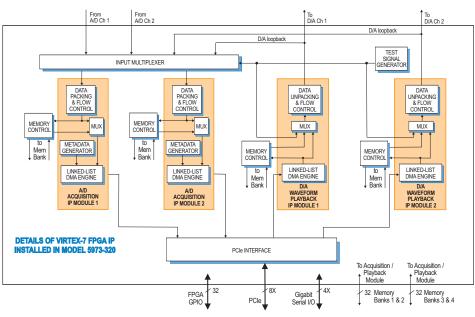
For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow® FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The 5973-320 can be optionally populated with one of two Virtex-7 FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/ decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

A 4X connection between the FPGA and the VPX P1 connector supports gigabit serial protocols.

Option -104 provides 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.


Option -110 supports the VITA-66.4 standard that provides up to 12 optical duplex lanes to the backplane. With the installation of a serial protocol, the VITA-66.4 interface enables gigabit communications between boards independent of the PCIe interface.

GateXpress for FPGA Configuration

The Flexor architecture includes GateXpress[®], a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power-up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on many systems.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power-up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first option to load is an alternate image from FLASH through software control. The user selects the desired image and issues a reload command. >

'EK

Pentek, Inc. One Park Way
 Upper Saddle River
 New Jersey 07458 www.pentek.com Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

The Model 8267 is a fullyintegrated development system for Pentek Cobalt, Onyx and Flexor 3U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

➤ The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

Memory Resources

The 5973-320 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's waveform playback capabilities, providing local storage for user waveforms.

PCI Express Interface

The Model 5973-320 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

A/D Converter and Digital Downconverter Stage

The front end accepts two analog RF or IF inputs on front-panel connectors with transformer-coupling into a Texas Instruments ADC32RF45 dual channel A/D. With dual built-in digital downconverters and programmable decimations, the converter serves as an ideal interface for a range of radar, signal intelligence and electronic countermeasures applications. The ADC32RF45 can operate within a range of different conversion speeds and resolutions. See the table on next page for supported modes.

Digital Upconverter and D/A Stage

A Texas Instruments DAC39J84 D/A accepts two baseband real or complex data streams from the FPGA. Each stream then passes through the upconvert, interpolate and D/A stages of the converter.

When operating as DUCs (digital upconverters), the converters interpolate and translate real or complex baseband input signals to a programmable IF center frequency. The data is then delivered to the dual 16-bit D/A converter stages. Analog outputs are through front panel connectors.

If translation is disabled, the D/As act as interpolating 16-bit D/As with output sampling rates up to 2.8 GHz. In both modes the D/As provide programmable interpolation.

Clocking and Synchronization

The 3320 architecture includes a timing bus generator, responsible for providing clocking to the data converters, FPGA and all synchronization circuits. When paired with the 7070, the FlexorSet's built-in functions include setup and support of the timing generator to produce the predefined data conversion profiles. This simplifies operation by allowing users to easily change profiles through software.

The timing bus generator has a built in frequency synthesizer that allows the board to operate without the need of an external sample clock. If users prefer, an external clock can be accepted on a front panel coax connector. In addition, the connector can be programmed to accept a 10 MHz system reference, locking the on-board clock to the reference that enables synchronization across multiple boards.

A front panel LVTTL Gate/Trigger/Sync connector is also included on the board. Users can program the connector's function to operate in one of three modes to match the application requirements. >

► Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel SSMC connectors Transformer Type: Mini-Circuits TC1-1-13M Full Scale Input: +6.6 dBm into 50 ohms 3 dB Passband: 4.5 to 3000 MHz A/D Converters Type: Texas Instruments ADC32RF45 Sampling Rate and Resolution: See table below Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel SSMC connectors Transformer Type: Coil Craft WBC4-14L Full-Scale Output: +4 dBm into 50 ohms 3 dB Passband: 1.5 MHz to 1200 MHz D/A Converters Type: Texas Instruments DAC39[84 Sampling Rate and Resolution: See table below Sample Clock Sources: Timing bus generator provides A/D and D/A clocks **Timing Bus Generator** Clock Source: Selectable from on-board frequency synthesizer or front panel external clock

Synchronization: Frequency synthesizer can be locked to an external 10 MHz PLL system reference

External Clock

Type: Front panel SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms

External Trigger Input

Type: Front panel SSMC connector Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Option -076: Xilinx Virtex-7 XC7VX690T-2

Custom FPGA I/O

4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols.

Parallel (Option -104): 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Optical (Option -110):** User configurable VITA-66.4, 12X (with VX690T) or 4X (with VX330T) duplex lanes

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental: Level L1 & L2 air-cooled, Level L3 conduction-cooled, ruggedized

Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

Ordering Information

Model	Description			
5973-320	2-Channel 3.0 GHz A/D, 2-Channel 2.8 GHz D/A with Virtex-7 FPGA - 3U VPX			
Options:				
-076	XC7VX690T-2 FPGA			
-104	LVDS FPGA I/O to VPX P2			

Ρ2 -110 VITA-66.4 12X (with VX690T), 4X (with VX330T) optical interface

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description

8267 VPX Development System See 8267 Datasheet for Options

Pre-configured Conversion Profiles*							
	A/D Converter				D/A Converter		
Converter Sample Rate	Output Resolution	Decimation	Output Data Rate**	Real / Complex	Interpolation	Input Data Rate**	Real / Complex
3.0 GHz	16 bit	4	3.0 GB/sec	complex	n/a	n/a	n/a
2.8 GHz	16 bit	4	2.8 GB/sec	complex	2	5.6 GB/sec	complex
2.8 GHz	16 bit	4	2.8 GB/sec	complex	4	2.8 GB/sec	complex
2.5 GHz	12 bit	bypass	5.0 GB/sec	real	n/a	n/a	n/a
2.0 GHz	14 bit	bypass	4.0 GB/sec	real	2	4.0 GB/sec	complex
2.0 GHz	14 bit	bypass	4.0 GB/sec	real	2	2.0 GB/sec	real
1.0 GHz	14 bit	bypass	2.0 GB/sec	real	1	2.0 GB/sec	real
Other modes can be custom-configured by the user							

be custom-configured by the use

** Per channel, output data rates are subject to maximum PCIe bus speeds of the host computer

Features

- Supports Xilinx Kintex UltraScale FPGA
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Two 3.0 GHz* A/Ds
- Two 2.8 GHz* D/As
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- User-configurable gigabit serial interface
- Optional optical Interface for gigabit serial interboard communication
- LVDS connections to the Kintex UltraScale FPGA for custom I/O and synchronization
- Compatible with several VITA standards including: VITA-46, VITA-48, VITA-66.4 and VITA-65 (OpenVPX[™] System Specification)
- Ruggedized and conductioncooled versions available

2-Channel 3.0 GHz A/D, 2-Channel 2.8 GHz D/A wth Kintex UltraScale FPGA - 3U VPX

General Information

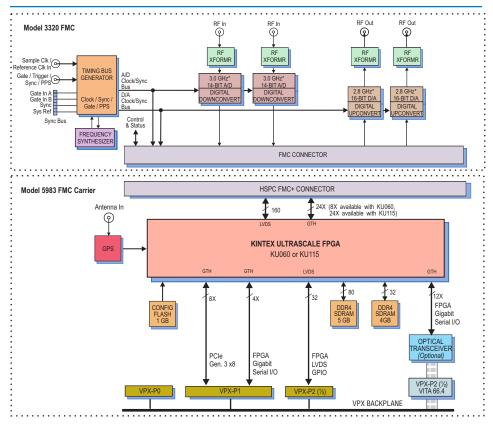
Model 5983 is a member of the JadeFX[™] family of high-performance 3U VPX baseboards with a Xilinx Kintex UltraScale FPGA and an available FMC I/O slot.

As an integrated solution, the Model 5983-320 FlexorSet[™] combines the Model 5983 and the Model 3317 Flexor[®] FMC as a factory-installed set. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter with programmable DDCs (Digital Downconverters) and is suitable for connection to the HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

In addition to the Gen. 3 x8 PCIe interface, the 5983 architecture includes an optional built-in gigabit serial optical interface. Up to 12 high-speed duplex optical lanes are available on a VITA-66.4 connector. With the installation of a serial protocol in the FPGA, this interface enables a high-bandwidth connection between 5983s mounted in the same chassis or even over extended distances between them.

The Flexor Architecture


Based on the proven design of the Pentek Jade family of Kintex products, the 5983 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

When delivered as an assembled board set, the 5983-320 includes factory-installed applications ideally matched to the board's analog interfaces. The functions include two A/D acquisition IP modules for simplifying data capture and data transfer.

The 5983-320 features a sophisticated D/A waveform generator IP module. A linked-list controller allows users to easily record to the D/As waveforms stored in either on-board or off-board host memory. Parameters including length of waveform, delay from trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 5983-320 to operate as a turnkey solution without the need to develop any FPGA IP.

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

www.pentek.com

A/D Acquisition IP Modules

The 5983-320 features two A/D Acquisition IP Modules for easy capture and data moving. Each IP module can receive data from any of the two A/Ds, a test signal generator or from the two D/A Waveform Generator IP modules in loopback mode.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for moving A/D data through the PCIe interface.

These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Generator IP Modules

The 5983-320 factory-installed functions include two sophisticated D/A Waveform Generator IP modules. A linked-list controller allows users to easily record waveforms stored in either onboard or off-board host memory to the two D/As.

Parameters including length of waveform, delay from trigger, waveform repetition, etc. can be programmed for each waveform. Up to 64 individual link entries per module can be chained together to create complex waveforms with a minimum of programming.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. The Pentek Navigator FPGA Design Kits include the board's entire FPGA design as a block diagram that can be edited in Xilinx's Vivado tool suite. In addition, all source code and complete IP core documentation is included. Developers can integrate their own IP along with the Pentek factory-installed functions or use the Navigator kit to completely replace the Pentek IP with their own.

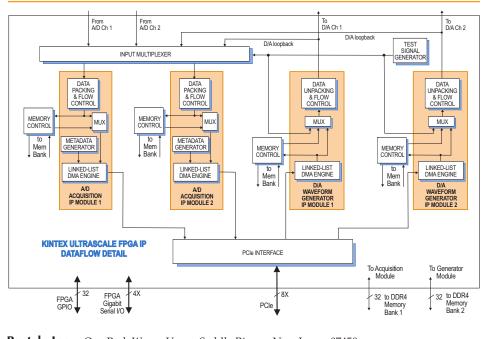
A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 5973-320 to operate as a turnkey solution without the need to develop any FPGA IP.

Xilinx Kintex UltraScale FPGA

The 5983-320 can be optionally populated with one of two Kintex UltraScale FPGAs to match the specific requirements of the processing task. Supported FPGAs are KU060 or KU115. The KU115 features 5520 DSP48E2 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost KU060 can be installed.

Sixteen pairs of LVDS connections are provided between the FPGA and the VPX P2 connector for custom I/O. For applications requiring custom gigabit links, a 4X connection is supported between the FPGA and the VPX P1 connector to support serial protocols.

Memory Resources


The 5983-320 architecture supports two independent DDR3 SDRAM memory banks. The banks are four and five gigabytes each and are part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

PCI Express Interface

The Model 5983-320 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

A/D Converter and Digital Downconverter Stage

The front end accepts two analog RF or IF inputs on front-panel connectors with transformer-coupling into a Texas Instruments ADC32RF45 dual channel A/D. With dual built-in digital downconverters and programmable decimations, the converter serves as an ideal interface for a range of radar, signal intelligence and electronic countermeasures applications. The ADC32RF45 can operate within a range of different conversion speeds and resolutions. See the table on the next page for supported modes.>

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904

Email: info@pentek.com

► GPS

An optional GPS receiver provides time and position information to the FPGA. This information can be used for precise data tagging.

Digital Upconverter and D/A Stage

A Texas Instruments DAC39J84 D/A accepts two baseband real or complex data streams from the FPGA. Each stream then passes through the upconvert, interpolate and D/A stages of the converter.

When operating as DUCs (digital upconverters), the converters interpolate and translate real or complex baseband input signals to a programmable IF center frequency. The data is then delivered to the dual 16-bit D/A converter stages. Analog outputs are through front panel connectors.

If translation is disabled, the D/As act as interpolating 16-bit D/As with output sampling rates up to 2.8 GHz. In both modes the D/As provide programmable interpolation.

Clocking and Synchronization

Two internal timing buses provide all timing and synchronization required by the A/D and D/A converters. Each includes a clock, sync and gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel coaxial connector.

This clock can be used directly by the A/D or D/A sections or divided by a built-in clock synthesizer circuit to provide different A/D and D/A clocks. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO. In this mode, the front-panel coaxial connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel LVTTL Gate/Trigger/Sync connector can receive an external timing signal to synchronize multiple modules.

Specifications

Front Panel Analog Signal Inputs

 Input Type: Transformer-coupled, front panel SSMC connectors
 Transformer Type: Mini-Circuits
 TC1-1-13M
 Full Scale Input: +6.6 dBm into 50 ohms
 3 dB Passband: 4.5 to 3000 MHz

 A/D Converters

 Type: Texas Instruments ADC32RF45
 Sampling Rate and Resolution: See the 3320 preconfigured modes table

 Front Panel Analog Signal Outputs
 Output Type: Transformer-coupled, front panel SSMC connectors

Transformer Type: Coil Craft WBC4-14L Full-Scale Output: +4 dBm into 50 ohms 3 dB Passband: 1.5 MHz to 1200 MHz

D/A Converters

Type: Texas Instruments DAC39J84 **Sampling Rate and Resolution:** See the 3320 preconfigured modes table

Sample Clock Sources: Timing bus generator provides A/D and D/A clocks

Timing Bus Generator

Clock Source: Selectable from on-board frequency synthesizer or front panel external clock

Synchronization: Frequency synthesizer can be locked to an external 10 MHz PLL system reference

External Clock

Type: Front panel SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms

External Trigger Input

Type: Front panel SSMC connector **Function:** Programmable functions include: trigger, gate, sync and PPS >

SPARK Development Systems

The SPARK Development Systems are fully-integrated platforms for Pentek Cobalt, Onyx, Jade and Flexor boards. Available in a PCIe rackmount (Model 8266), a 3U VPX chassis (Model 8267) or a 6U VPX chassis (Model 8264), they were created to save engineers and system integrators the time and expense associated with building and testing a development system. Each SPARK system is delivered with the Pentek board(s) and required software installed and equipped with sufficient cooling and power to ensure optimum performance.

2-Channel 3.0 GHz A/D, 2-Channel 2.8 GHz D/A wth Kintex UltraScale FPGA - 3U VPX

Field Programmable Gate Array Standard: Xilinx Kintex UltraScale XCKU060-2 **Optional:** Xilinx Kintex UltraScale XCKU115-2 Custom FPGA I/O Serial: 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. Parallel: 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O Optical (Option -110): VITA-66.4, 12X duplex lanes Memory Type: DDR4 SDRAM Size: Two banks, one 4 GB and one 5 GB

Speed: 1200 MHz (2400 MHz DDR)

PCI-Express Interface PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental Standard: L0 (air cooled) Operating Temp: 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, noncondensing Option -702: L2 (air cooled) Operating Temp: -20° to 65° C Storage Temp: -40° to 100° C Relative Humidity: 0 to 95%, noncondensing Option -763: L3 (conduction cooled)

- **Operating Temp:** -40° to 70° C **Storage Temp:** -50° to 100° C **Relative Humidity:** 0 to 95%, noncondensing
- Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm) OpenVPX Compatibility: The Model 5983-313 is compatibile with the following
 - module profile, as defined by the VITA 65 Open-VPX Specification: SLT3-PAY-2F1F2U1E-14.6.6-1

Pentek FlexorSet Models

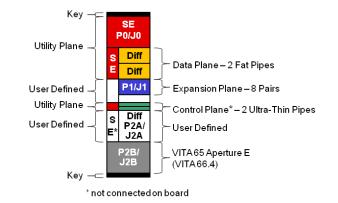
Form	FPGAType	Carrier	FMC	FlexorSet	
Factor	Development Tools	Model	Model	Model	Description
3U VPX	U VPX Virtex-7 5973		3312	5973-312	4 Ch250 MHz A/D & 2 Ch800 MHz D/A
	ReadyFlow BSP			5973-313	As above with 4 multiband DDCs and interpolation filters
	GateFlow FDK		3316	5973-316	8 Ch250 MHz 16-bitA/D
	Vivado			5973-317	As above with 8 multiband DDCs
			3320	5973-320	2 Ch3 GHz A/D & 2 Ch2.8 GHz MHz D/A
			3324	5973-324	4 Ch500 MHz A/D & 4 Ch2 GHz D/A
	Kintex Ultra Scale Navigator BSP	5983	3312	5 983 - 31 3	4 Ch250 MHz A/D & 2 Ch800 MHz D/A with 4 multiban d D DCs and interpolation filters
	Navigator FDK Vivado		3316	5 983 - 31 7	8 Ch250 MHz 16-bitA/D with 8 multiband DDCs
			3320	5983-320	2 Ch3 GHz A/D & 2 Ch2.8 GHz MHz D/A
			3324	5983-324	4 Ch500 MHz A/D & 4 Ch2 GHz D/A
PCle	Virtex-7	7 070	3312	7 070 - 31 2	4 Ch250 MHz A/D & 2 Ch800 MHz D/A
	ReadyFlow BSP			7 070 - 31 3	As above with 4 multiband DDCs and interpolation filters
	GateFlow FDK		3316	7 070 - 31 6	8 Ch250 MHz 16-bitA/D
	Vivado			7 070 - 31 7	As above with 8 multiband DDCs
			3320	7070-320	2 Ch3 GHz A/D & 2 Ch2.8 GH z MHz D/A
			3324	7 070 - 32 4	4 Ch500 MHz A/D & 4 Ch2 GHz D/A

Ordering Information

Model Description

5983-320 2-Channel 3.0 GHz A/D, 2-Channel 2.8 GHz D/A with Virtex-7 FPGA - 3U VPX

Options:


-087	XCKU115-2 FPGA
-110	VITA-66.4 12X optical
	interface
-180	GPS Support
-702	Air cooled, Level L2
-763	Conduction-cooled, Level L3

Contact Pentek for availability of rugged and conduction-cooled versions

 Pentek, Inc.
 One Park Way ◆ Upper Saddle River ◆ New Jersey 07458

 Tel: 201/818/5900 ◆ Fax: 201/818/5904 ◆ Email: info@pentek.com
 www.pentek.com

FlexorSet Model 7070-320

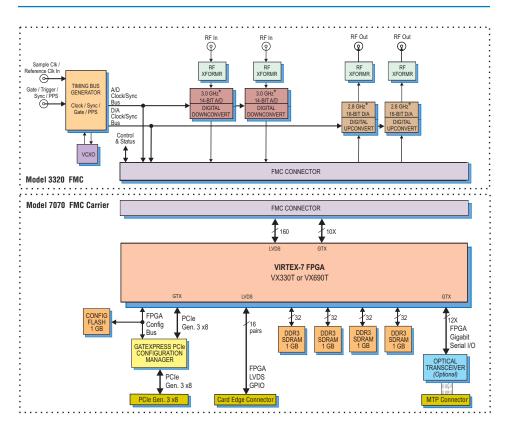
General Information

Model 7070-320 is a member of the Flexor[®] family of high-performance PCIe boards based on the Xilinx Virtex-7 FPGA.

As a FlexorSet[™] integrated solution, the Model 3320 FMC is factory-installed on the 7070 FMC carrier. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter and is suitable for connection to the RF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGAprocessing IP.

Designed to allow users to optimize data conversion rates and modes for specific application requirements, the FlexorSet provides preconfigured conversion profiles. Users can use these profiles which include: digital downconverter and digital upconverter modes, conversion resolution and A/D and D/A sample rates, or program their own profiles. In addition to supporting PCIe Gen. 3 as a native interface, the Model 5973-320 includes optional copper and optical connections to the Virtex-7 FPGA for custom I/O.


The Flexor Architecture

Based on the proven design of the Pentek Onyx family of Virtex-7 products, the 7070 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

When delivered as an assembled board set, the 7070-320 includes factory-installed applications ideally matched to the board's analog interfaces. The functions include two A/D acquisition IP modules for simplifying data capture and data transfer.

Each of the acquisition IP modules contains IP modules for DDR3 SDRAM memories.

The 7070-320 features two sophisticated D/A waveform playback IP modules. A linked-list controller allows users to easily play back to the D/As waveforms stored in either on-board or off-board host memory. Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform. >

* See last page for configuration profiles

Features

- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Two 3.0 GHz* A/Ds
- Two 2.8 GHz* D/As
- Two digital downconverters
- Two digital upconverters
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional optical Interface for gigabit serial interboard communication
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com

FlexorSet Model 7070-320

A/D Acquisition IP Modules

The 7070-320 features two A/D Acquisition IP Modules for easy capture and data moving. Each IP module can receive data from any of the two A/Ds, a test signal generator or from the two D/A Waveform Playback IP modules in loopback mode.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for moving A/D data through the PCIe interface.

These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Modules

The 7070-320 factory-installed functions include two sophisticated D/A Waveform Playback IP modules. A linked-list controller allows users to easily play back waveforms stored in either on-board or off-board host memory to the two D/As.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform. Up to 64 individual link entries per module can be chained together to create complex waveforms with a minimum of programming.

PENTEK

In each playback module, up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

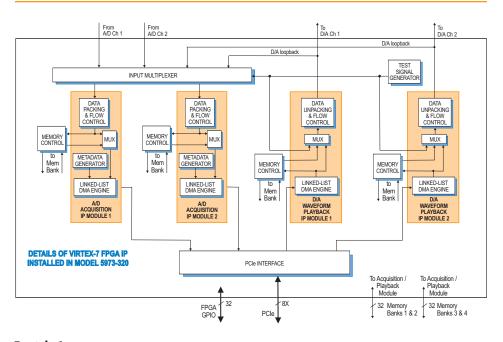
A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 7070-320 to operate as a turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow[®] FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The 7070-320 can be optionally populated with one of two Virtex-7 FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/ decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed. Option -104 provides 16 pairs of LVDS connections between the FPGA and a card-edge connector for custom I/O.


Option -110 supports the VITA-66.4 standard that provides up to 12 optical duplex lanes to the backplane. With the installation of a serial protocol, the VITA-66.4 interface enables gigabit communications between boards independent of the PCIe interface.

GateXpress for FPGA Configuration

The Flexor architecture includes GateXpress[®], a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power-up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on many systems.

The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power-up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first option to load is an alternate image from FLASH through software control. The user selects the desired image and issues a reload command. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201.818:5900
Fax: 201.818:5904
Email: info@pentek.com

➤ The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

Memory Resources

The 7070-320 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's waveform playback capabilities, providing local storage for user waveforms.

PCI Express Interface

The Model 7070-320 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

A/D Converter and Digital Downconverter Stage

The front end accepts two analog RF or IF inputs on front-panel connectors with transformer-coupling into a Texas Instruments ADC32RF45 dual channel A/D. With dual built-in digital downconverters and programmable decimations, the converter serves as an ideal interface for a range of radar, signal intelligence and electronic countermeasures applications. The ADC32RF45 can operate within a range of different conversion speeds and resolutions. See the table on next page for supported modes.

Digital Upconverter and D/A Stage

A Texas Instruments DAC39J84 D/A accepts two baseband real or complex data streams from the FPGA. Each stream then passes through the upconvert, interpolate and D/A stages of the converter.

When operating as DUCs (digital upconverters), the converters interpolate and translate real or complex baseband input signals to a programmable IF center frequency. The data is then delivered to the dual 16-bit D/A converter stages. Analog outputs are through front panel connectors.

If translation is disabled, the D/As act as interpolating 16-bit D/As with output sampling rates up to 2.8 GHz. In both modes the D/As provide programmable interpolation.

Clocking and Synchronization

The 3320 architecture includes a timing bus generator, responsible for providing clocking to the data converters, FPGA and all synchronization circuits. When paired with the 7070, the FlexorSet's built-in functions include setup and support of the timing generator to produce the predefined data conversion profiles. This simplifies operation by allowing users to easily change profiles through software.

The timing bus generator has a built in frequency synthesizer that allows the board to operate without the need of an external sample clock. If users prefer, an external clock can be accepted on a front panel coax connector. In addition, the connector can be programmed to accept a 10 MHz system reference, locking the on-board clock to the reference that enables synchronization across multiple boards.

A front panel LVTTL Gate/Trigger/Sync connector is also included on the board. Users can program the connector's function to operate in one of three modes to match the application requirements. >

► Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel SSMC connectors Transformer Type: Mini-Circuits TC1-1-13M Full Scale Input: +6.6 dBm into 50 ohms 3 dB Passband: 4.5 to 3000 MHz A/D Converters Type: Texas Instruments ADC32RF45 Sampling Rate and Resolution: See table below Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel SSMC connectors Transformer Type: Coil Craft WBC4-14L Full-Scale Output: +4 dBm into 50 ohms 3 dB Passband: 1.5 MHz to 1200 MHz **D/A Converters** Type: Texas Instruments DAC39[84 Sampling Rate and Resolution: See table below Sample Clock Sources: Timing bus generator provides A/D and D/A clocks

Timing Bus Generator

Clock Source: Selectable from on-board frequency synthesizer or front panel external clock

Synchronization: Frequency synthesizer can be locked to an external 10 MHz PLL system reference

External Clock

Type: Front panel SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms

External Trigger Input

Type: Front panel SSMC connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Option -076: Xilinx Virtex-7 XC7VX690T-2

Custom FPGA I/O

Parallel (Option -104): 16 pairs of LVDS connections between the FPGA and a card-edge connector for custom I/O **Optical (Option -110):** User configurable VITA-66.4, 12X (with VX690T) or 4X (with VX330T) duplex lanes

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental: Level L1 & L2 air-cooled Size: 3.937 in. x6.717 in. (100 mm x 170.6 mm)

Pre-configured Conversion Profiles*							
	A/D Converter			D/A Converter			
Converter Sample Rate	Output Resolution	Decimation	Output Data Rate**	Real / Complex	Interpolation	Input Data Rate**	Real / Complex
3.0 GHz	16 bit	4	3.0 GB/sec	complex	n/a	n/a	n/a
2.8 GHz	16 bit	4	2.8 GB/sec	complex	2	5.6 GB/sec	complex
2.8 GHz	16 bit	4	2.8 GB/sec	complex	4	2.8 GB/sec	complex
2.5 GHz	12 bit	bypass	5.0 GB/sec	real	n/a	n/a	n/a
2.0 GHz	14 bit	bypass	4.0 GB/sec	real	2	4.0 GB/sec	complex
2.0 GHz	14 bit	bypass	4.0 GB/sec	real	2	2.0 GB/sec	real
1.0 GHz	14 bit	bypass	2.0 GB/sec	real	1	2.0 GB/sec	real

* Other modes can be custom-configured by the user

** Per channel, output data rates are subject to maximum PCIe bus speeds of the host computer

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
7070-320	2-Channel 3.0 GHz A/D, 2-Channel 2.8 GHz D/A with Virtex-7 FPGA - x8 PCIe
Options:	
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to card- edge connector
-110	VITA-66.4 12X (with VX690T), 4X (with VX330T) optical interface

Model Description

8266 PC Development System See 8266 Datasheet for Options

Model 3324

Features

- Sold as the:
 - FlexorSet Model 5973-324
 - FlexorSet Model 7070-324
- Four 500 MHz, 16-bit A/Ds
- Four digital upconverters
- Four 2 GHz, 16-bit D/As (500 MHz input data rate, 2 GHz output sample rate with interpolation)
- On-board timing bus generator with multiboard synchronization
- Sample clock synchronization to an external system reference
- VITA 57 FMC compatible
- Complete radar or software radio interface solution when combined with the Model 5973 3U OpenVPX or Model 7070 PCIe Virtex-7 FMC carrier
- Ruggedized and conductioncooled versions available

General Information

The Flexor[™] Model 3324 is a multichannel, high-speed data converter FMC. It is suitable for connection to HF or IF ports of a communications or radar system. It includes four 500 MHz, 16-bit A/Ds, four 2 GHz, 16-bit D/As, programmable clocking, and multiboard synchronization for support of larger high-channelcount systems.

The 3324 is sold as a complete turnkey data acquisition and signal generation solution as the FlexorSet[™] 5973-324 3U VPX or the FlexorSet 7070-324 PCIe board. For applications that require custom processing, the FlexorSets are ideal for IP development and deployment.

A/D Converters

The front end accepts four analog HF or IF inputs on front-panel connectors with transformer-coupling into four 500 MHz, 16-bit A/D converters.

Performance of the Model 3324

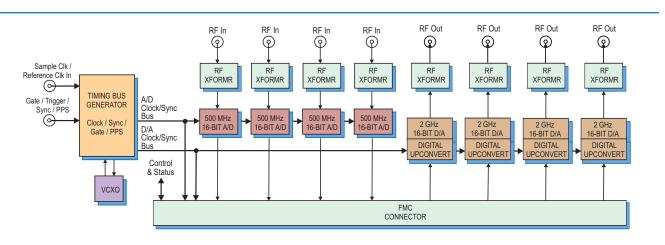
The true performance of the 3324 can be unlocked only when used with the Pentek Model 5973 or Model 7070 FMC carriers. With factory-installed IP, the board-set provides a turnkey data acquisition subsystem eliminating the need to create any FPGA IP. Installed features include flexible A/D acquisition, programmable linked-list DMA engines, and a D/A waveform playback IP module.

A/D Acquisition IP Modules

With the 3324 installed on either the 5973 or the 7070 carrier, the board-set features four A/D Acquisition IP Modules for easily capturing and moving data. Each module can receive data from any of the four A/Ds,

a test signal generator or from the D/A waveform playback IP module in loopback mode.

Each IP module can have an associated memory bank on the FMC carrier for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the FMC carrier's PCIe interface.


These powerful linked-list DMA engines are capable of a unique acquisition gatedriven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data-length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Modules

Whith the 5973 or the 7070, the 3324 features four sophisticated D/A waveform playback IP modules. A linked-list controller allows users to easily play back via the D/As waveforms stored in either on-board or off-board host memory.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform. Up to 64 individual link entries per module can be chained together to create complex waveforms with a minimum of programming.

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201-818-5900

Fax: 201-818-5904

Email: info@pentek.com

www.pentek.com

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Model 8267

The Model 8267 is a fullyintegrated VPX development system for Pentek Cobalt, Onyx and Flexor VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

> SPARK Development Systems

Ordering Information

Model	Description
3324	4-Channel 500 MHz
	16-bit A/D, 4-Channel
	2 GHz 16-bit D/A - FMC

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8266	PC Development System See 8266 Datasheet for Options
8267	VPX Development System See 8267 Datasheet for Options

► Digital Upconverters and D/As

Four D/As accept baseband real or complex data streams from the FPGA. Each stream then passes through the upconvert, interpolate and D/A stages of the converter.

When operating as DUCs (digital upconverters), the converters interpolate and translate real or complex baseband input signals to a programmable IF center frequency. The data is then delivered to the 16-bit D/A converter stages. Analog outputs are through front panel connectors.

If translation is disabled, the D/As act as interpolating 16-bit D/As with output sampling rates up to 1.5 GHz. In both modes the D/As provide interpolation factors of 2x, 4x, 8x and 16x.

Clocking and Synchronization

Two internal timing buses provide all timing and synchronization required by the A/D and D/A converters. Each includes a clock, sync and gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel coaxial connector. This clock can be used directly by the A/D or D/A sections or divided by a built-in clock synthesizer circuit to provide different A/D and D/A clocks. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this mode, the front coaxial panel connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel Gate/Trigger/PPS connector can receive an external timing signal allowing multiple modules to be synchronized and create larger multiboard systems.

ReadyFlow Board Support Package

When used with the 5973 or the 7070, Pentek's ReadyFlow[®] BSP provides control of all the 3324's hardware and IP-based functions. Ready to run examples and a fully-sourced C library provide a quick-start and powerful platform to create custom applications. ReadyFlow is compatible with Windows and Linux operating systems.

Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek's GateFlow[®] FPGA Design Kits include all of the factoryinstalled Virtex-7-based 5973/3324 or 7070/3324 modules as documented source code. Using Xilinx Vivado tools, developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek 5973/7070 IP with their own.

FMC Interface

The Model 3324 complies with the VITA 57 High-Pin Count FMC specification. The interface provides all data, clocking, synchronization, control and status signals between the 3324 and the FMC carrier.

Model 3324 Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel connectors

Transformer Type: Coil Craft WBC1-1TLB **Full Scale Input:** +4 dBm into 50 ohms **3 dB Passband:** 250 kHz to 750 MHz

A/D Converters

Type: Texas Instruments ADS54J60 **Sampling Rate:** up to 500 MHz **Resolution:** 16 bits

Front Panel Analog Signal Outputs

Output Type: Transformer-coupled, front panel connectors

Transformer Type: Coil Craft WBC4-6TLB **Full-Scale Output:** +4 dBm into 50 ohms

3 dB Passband: 300 kHz to 700 MHz

D/A Converters

Type: Texas Instruments DAC38J84 **Input Data Rate:** Up to 500 MHz **Output Sample Rate:** Up to 2 GHz (with interpolation) **Resolution:** 16 bits

Sample Clock Source: On-board clock

synthesizer Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz) or front-panel external clock Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D and D/A clocks

External Clock

count FMC

Type: Front panel connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

External Trigger Input

Type: Front panel connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Environmental: Level L1 & L2 air-cooled, Level L3 conduction-cooled, ruggedized I/O Module Interface: VITA-57.1, High-pin-

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 2018185900 Fax: 2018185904 Email: info@pentek.com

FlexorSet Model 5973-324

Features

- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Four 500 MHz 16-bit A/Ds
- Four digital upconverters
- Four 2 GHz 16-bit D/As (500 MHz input sample rate, 2 GHz output sample rate with interpolation)
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- User-configurable gigabit serial interface
- Optional optical Interface for gigabit serial interboard communication
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O
- Compatible with several VITA standards including: VITA-46, VITA-48, VITA-66.4 and VITA-65 (OpenVPX[™] System Specification)
- Ruggedized and conductioncooled versions available

General Information

Model 5973-324 is a member of the Flexor[®] family of high-performance 3U VPX boards based on the Xilinx Virtex-7 FPGA.

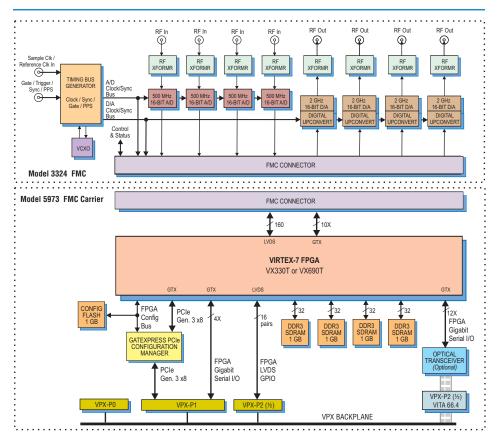
As a FlexorSet[™] integrated solution, the Model 3324 FMC is factory-installed on the 5973 FMC carrier. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter and is suitable for connection to the HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes four 500 MHz, 16-bit A/Ds, four digital upconverters, four 2 GHz, 16bit D/As, and four banks of memory. In addition to supporting PCIe Gen. 3 as a native interface, the Model 5973-324 includes optional copper and optical connections to the Virtex-7 FPGA for custom I/O.

The Flexor Architecture

Based on the proven design of the Pentek Onyx family of Virtex-7 products, the 5973 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.


When delivered as an assembled board set, the 5973-324 includes factory-installed applications ideally matched to the board's analog interfaces. The functions include four A/D acquisition IP modules for simplifying data capture and data transfer.

Each of the four acquisition IP modules contains IP modules for DDR3 SDRAM memories.

The 5973-324 features four sophisticated D/A waveform playback IP modules. A linked-list controller allows users to easily play back to the D/As waveforms stored in either on-board or off-board host memory. Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

In each playback module, up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 5973-324 to operate as a turnkey solution without the need to develop any FPGA IP.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

FlexorSet Model 5973-324

A/D Acquisition IP Modules

The 5973-324 features four A/D Acquisition IP Modules for easy capture and data moving. Each IP module can receive data from any of the four A/Ds, a test signal generator or from the four D/A Waveform Playback IP modules in loopback mode.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for moving A/D data through the PCIe interface.

These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Modules

The 5973-324 factory-installed functions include four sophisticated D/A Waveform Playback IP modules. A linked-list controller allows users to easily play back waveforms stored in either on-board or off-board host memory to the four D/As.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform. Up to 64 individual link entries per module can be chained together to create complex waveforms with a minimum of programming.

► Extendable IP Design

For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow[®] FPGA Design Kits include all of the factoryinstalled modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The 5973-324 can be optionally populated with one of two Virtex-7 FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX330T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX330T can be installed.

A 4X connection between the FPGA and the VPX P1 connector supports gigabit serial protocols.

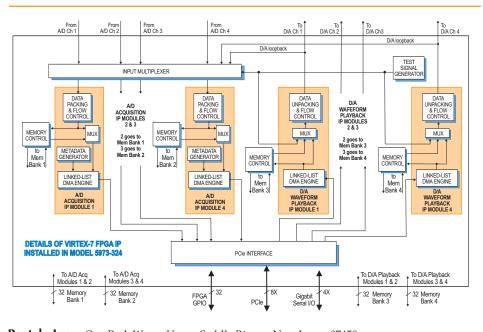
Option -104 provides 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O.

Option -110 supports the VITA-66.4 standard that provides 12 optical duplex lanes to the backplane. With the installation of a serial protocol, the VITA-66.4 interface enables gigabit communications between boards independent of the PCIe interface.

GateXpress for FPGA Configuration

The Flexor architecture includes GateXpress[®], a sophisticated FPGA-PCIe

configuration manager for loading and reloading the FPGA. At power-up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on many systems.


The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power-up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first option to load is an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT. >

www.pentek.com

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201.818:5900
Fax: 201.818:5904
Email: info@pentek.com

FlexorSet Model 5973-324

PCI Express Interface

The Model 5973-324 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Memory Resources

The 5973-324 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

Model 8267

The Model 8267 is a fullyintegrated development system for Pentek Cobalt, Onyx and Flexor 3U VPX boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
5973-324	4-Channel 500 MHz 16-bit A/D, 4-Channel 2 GHz 16-bit D/A with Virtex-7 FPGA - 3U VPX
Options:	
-076	XC7VX690T-2 FPGA
-104	LVDS FPGA I/O to VPX P2
-110	VITA-66.4 12X optical interface

Contact Pentek for availability of rugged and conduction-cooled versions

Model	Description
8267	VPX Development System See 8267 Datasheet for Options

4-Ch. 500 MHz 16-bit A/D, 4-Ch. 2 GHz 16-bit D/A - 3U VPX

➤ In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts four analog HF or IF inputs on front-panel connectors with transformer-coupling into 500 MHz, 16-bit A/D converters.

Digital Upconverter and D/A Stage

Four D/As accept baseband real or complex data streams from the FPGA. Each stream then passes through the upconvert, interpolate and D/A stages of the converter.

When operating as DUCs (digital upconverters), the converters interpolate and translate real or complex baseband input signals to a programmable IF center frequency. The data is then delivered to the 16-bit D/A converter stages. Analog outputs are through front panel connectors.

If translation is disabled, the D/As act as interpolating 16-bit D/As with output sampling rates up to 2 GHz. In both modes the D/As provide interpolation factors of 2x, 4x, 8x and 16x.

Clocking and Synchronization

Two internal timing buses provide all timing and synchronization required by the A/D and D/A converters. Each includes a clock, sync and gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel coaxial connector. This clock can be used directly by the A/D or D/A sections or divided by a built-in clock synthesizer circuit to provide different A/D and D/A clocks. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO. In this mode, the front coaxial panel connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel LVTTL Gate/Trigger/Sync connector can receive an external timing signal to synchronize multiple modules.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel connectors Transformer Type: Coil Craft WBC1-1TLB **Full Scale Input:** +4 dBm into 50 ohms **3 dB Passband:** 300 kHz to 750 MHz

A/D Converters

Type: Texas Instruments ADS54J60 **Sampling Rate:** Up to 500 MHz **Resolution:** 16 bits

- Front Panel Analog Signal Outputs
- Output Type: Transformer-coupled, front panel connectors

Transformer Type: Coil Craft WBC4-6TLB Full-Scale Output: +4 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz D/A Converters

Type: Texas Instruments DAC38J84 **Input Data Rate:** Up to 500 MHz **Output Sample Rate:** Up to 2 GHz (with interpolation)

Resolution: 16 bits

Sample Clock Sources: On-board clock synthesizer generates two clocks: an A/D clock and a D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8 or 16 for the A/D and D/A clocks

External Clock

Type: Front panel connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

External Trigger Input

Type: Front panel connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Option -076: Xilinx Virtex-7 XC7VX690T-2

Custom FPGA I/O

4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols.

Parallel (Option -104): 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O **Optical (Option -110):** VITA-66.4, 12X duplex lanes

Memory

Type: DDR3 SDRAM

Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental: Level L1 & L2 air-cooled, Level L3 conduction-cooled, ruggedized Size: 3.937 in. x6.717 in. (100 mm x 170.6 mm)

PENTEK

Pentek, Inc. One Park Way Upper Saddle River New Jersey 07458 Tel: 201/818/5900 Fax: 201/818/5904 Email: info@pentek.com

FlexorSet Model 5983-324

Features

- Supports Xilinx Kintex UltraScale FPGA
- Four 500 MHz 16-bit A/Ds
- Four digital upconverters
- Four 2 GHz 16-bit D/As (500 MHz input sample rate, 2 GHz output sample rate with interpolation)
- 4 and 5 GB of DDR4 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- User-configurable gigabit serial interface
- Optional optical Interface for gigabit serial interboard communication
- LVDS connections to the Kintex Ultrascale FPGA for custom I/O and synchronization
- Compatible with several VITA standards including: VITA-46, VITA-48, VITA-66.4 and VITA-65 (OpenVPX[™] System Specification)
- Ruggedized and conductioncooled versions available

4-Channel 500 MHz 16-bit A/D, 4-Channel 2 GHz 16-bit D/A Kintex UltraScale FPGA - 3UVPX

General Information

Model 5983 is a member of the JadeFX[™] family of high-performance 3U VPX baseboards with a Xilinx Kintex UltraScale FPGA and an available FMC I/O slot.

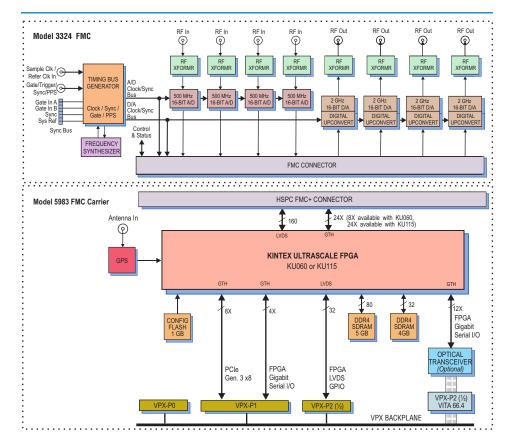
As an integrated solution, the Model 5983-324 FlexorSet[™] combines the Model 5983 and the Model 3324 Flexor[®] FMC as a factory-installed set. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter with programmable DDCs (Digital Downconverters) and is suitable for connection to the HF or IF ports of a communications or radar system. Its built-in data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

In addition to the Gen. 3 x8 PCIe interface, the 5983 architecture includes an optional built-in gigabit serial optical interface. Up to 12 high-speed duplex optical lanes are available on a VITA-66.4 connector. With the installation of a serial protocol in the FPGA, this interface enables a high-bandwidth connection between 5983s mounted in the same chassis or even over extended distances.

The Flexor Architecture

Based on the proven design of the Pentek Jade family of Kintex products, the 5983


FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

When delivered as an assembled board set, the 5983-324 includes factory-installed applications ideally matched to the board's analog interfaces. The functions include two A/D acquisition IP modules for simplifying data capture and data transfer.

The 5983-324 features a sophisticated D/A waveform generator IP module. A linked-list controller allows users to easily record to the D/As waveforms stored in either on-board or off-board host memory. Parameters including length of waveform, delay from trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 5983-324 to operate as a turnkey solution without the need to develop any FPGA IP. >

Pentek, Inc. One Park Way & Upper Saddle River & New Jersey 07458 Tel: 201·818·5900 & Fax: 201·818·5904 & Email: info@pentek.com

www.pentek.com

FlexorSet Model 5983-324

4-Channel 500 MHz 16-bit A/D, 4-Channel 2 GHz 16-bit D/A Kintex UltraScale FPGA - 3U VPX

A/D Acquisition IP Modules

The 5983-324 features four A/D Acquisition IP Modules for easy capture and data moving. Each IP module can receive data from any of the four A/Ds, a test signal generator or from the four D/A Waveform Recorder IP modules in loopback mode.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for moving A/D data through the PCIe interface.

These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Recorder IP Modules

The 5983-324 factory-installed functions include four sophisticated D/A Waveform Recorder IP modules. A linked-list controller allows users to easily record waveforms stored in either onboard or off-board host memory to the four D/As.

Parameters including length of waveform, delay from trigger, waveform repetition, etc. can be programmed for each waveform. Up to 64 individual link entries per module can be chained together to create complex waveforms with a minimum of programming.

► Extendable IP Design For applications that require specialized functions, users can install their own custom IP for data processing. The Pentek Navigator FPGA Design Kits include the board's entire FPGA design as a block diagram that can be edited in Xilinx's Vivado tool suite. In addition, all source code and complete IP core documentation is included. Developers can integrate their own IP along with the Pentek factory-installed functions or use the Navigator kit to completely replace the Pentek IP with their own.

A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 5983-324 to operate as a turnkey solution without the need to develop any FPGA IP.

Xilinx Kintex UltraScale FPGA

The 5983-324 can be optionally populated with one of two Kintex UltraScale FPGAs to match the specific requirements of the processing task. Supported FPGAs are KU060 or KU115. The KU115 features 5520 DSP48E2 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost KU060 can be installed.

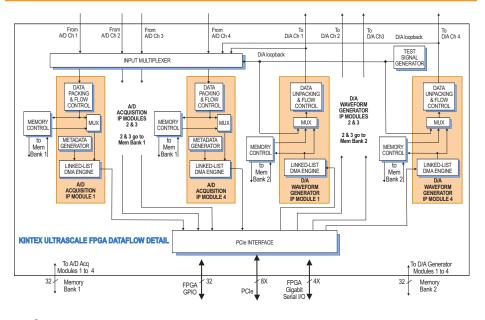
Sixteen pairs of LVDS connections are provided between the FPGA and the VPX P2 connector for custom I/O. For applications requiring custom gigabit links, a 4X connection is supported between the FPGA and the VPX P1 connector to support serial protocols.

Memory Resources

The 5983-324 architecture supports two independent DDR3 SDRAM memory banks. The banks are four and five gigabytes each and are part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

PCI Express Interface

The Model 5983-324 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.


A/D Converter and Downconverter

The front end accepts four analog RF or IF inputs on front-panel connectors with transformer-coupling into Texas Instruments ADC32RF45 dual channel A/D. With dual built-in digital downconverters and programmable decimations, the converter serves as an ideal interface for a range of radar, signal intelligence and electronic countermeasures applications. The ADC32RF45 can operate within a range of different conversion speeds and resolutions. See the table on the last page for supported modes.

Digital Upconverter and D/A

Four D/As accept baseband real or complex data streams from the FPGA. Each stream then passes through the upconvert, interpolate and D/A stages of the converter.

When operating as DUCs (digital upconverters), the converters interpolate and translate real or complex baseband input signals to a programmable IF center frequency.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201/818/5900
Fax: 201/818/5904
Email: info@pentek.com

www.pentek.com

► GPS

An optional GPS receiver provides time and position information to the FPGA. This information can be used for precise data tagging.

Clocking and Synchronization

Two internal timing buses provide all timing and synchronization required by the A/D and D/A converters. Each includes a clock, sync and gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel coaxial connector.

This clock can be used directly by the A/D or D/A sections or divided by a built-in clock synthesizer circuit to provide different A/D and D/A clocks. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO. In this mode, the front-panel coaxial connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel LVTTL Gate/Trigger/Sync connector can receive an external timing signal to synchronize multiple modules.

Specifications

Front Panel Analog Signal Inputs
Input Type: Transformer-coupled, front panel connectors
Transformer Type: Coil Craft WBC1-1TLB
Full Scale Input: +4 dBm into 50 ohms 3 dB Passband: 300 kHz to 750 MHz
A/D Converters
Type: Texas Instruments ADS54J60
Sampling Rate: Up to 500 MHz
Resolution: 16 bits
Front Panel Analog Signal Outputs
Output Type: Transformer-coupled, front panel connectors

Transformer Type: Coil Craft WBC4-6TLB **Full-Scale Output:** +4 dBm into 50 ohms **3 dB Passband:** 300 kHz to 700 MHz

D/A Converters

Type: Texas Instruments DAC38J84 **Input Data Rate:** Up to 500 MHz **Output Sample Rate:** Up to 2 GHz (with interpolation) **Resolution:** 16 bits

Sample Clock Sources: On-board clock synthesizer generates two clocks: an A/D clock and a D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8 or 16 for the A/D and D/A clocks >

FlexorSet Model 5983-324

SPARK Development Systems

The SPARK Development Systems are fully-integrated platforms for Pentek Cobalt, Onyx, Jade and Flexor boards. Available in a PCIe rackmount (Model 8266), a 3U VPX chassis (Model 8267) or a 6U VPX chassis (Model 8264), they were created to save engineers and system integrators the time and expense associated with building and testing a development system. Each SPARK system is delivered with the Pentek board(s) and required software installed and equipped with sufficient cooling and power to ensure optimum performance.

Development Systems

4-Channel 500 MHz 16-bit A/D, 4-Channel 2 GHz 16-bit D/A Kintex UltraScale FPGA - 3UVPX

External Clock Type: Front panel connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference **External Trigger Input** Type: Front panel connector Function: Programmable functions include: trigger, gate, sync and PPS Field Programmable Gate Array Standard: Xilinx Kintex UltraScale XCKU060-2 **Optional:** Xilinx Kintex UltraScale XCKU115-2 Custom FPGA I/O Serial: 4X gigabit links between the FPGA and the VPX P1 connector to support serial protocols. Parallel: 16 pairs of LVDS connections between the FPGA and the VPX P2 connector for custom I/O Optical (Option -110): VITA-66.4, 12X duplex lanes

Memory Type: DDR4 SDRAM Size: Two banks, one 4 GB and one 5 GB Speed: 1200 MHz (2400 MHz DDR) **PCI-Express Interface** PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; Environmental Standard: L0 (air cooled) **Operating Temp:** 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, noncondensing Option -702: L2 (air cooled) **Operating Temp:** -20° to 65° C **Storage Temp:** –40° to 100° C Relative Humidity: 0 to 95%, noncondensing Option -763: L3 (conduction cooled) **Operating Temp:** -40° to 70° C **Storage Temp:** –50° to 100° C Relative Humidity: 0 to 95%, noncondensing Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm) OpenVPX Compatibility: The Model 5983-313 is compatibile with the following module profile, as defined by the VITA 65 Open-VPX Specification:

SLT3-PAY-2F1F2U1E-14.6.6-1

Ordering Information Description

Model

Description
4-Channel 500 MHz 16-bit A/D, 4-Channel 2 GHz 16-bit D/A with Kintex UltraScale FPGA - 3U VPX
XCKU115-2 FPGA
VITA-66.4 12X optical interface
GPS Support
Air cooled, Level L2
Conduction-cooled, Level L3

Contact Pentek for availability of rugged and conduction-cooled versions

Key P0/J0 Utility Plane Diff s Data Plane – 2 Fat Pipes Diff P1/J1 User Defined Expansion Plane - 8 Pairs Utility Plane Control Plane* – 2 Ultra-Thin Pipes Diff P2A/ s User Defined User Defined J2A P2B/ J2B VITA 65 Aperture E (VITA 66.4) Kev ---* not connected on board

Pentek, Inc. One Park Way
 Upper Saddle River
 New Jersey 07458 www.pentek.com Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com

FlexorSet Model 7070-324

Features

- Supports Xilinx Virtex-7 VXT FPGAs
- GateXpress supports dynamic FPGA reconfiguration across PCIe
- Four 500 MHz 16-bit A/Ds
- Four digital upconverters
- Four 2 GHz 16-bit D/As (500 MHz input data rate, 2 GHz output sample rate with interpolation)
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Optional optical Interface for gigabit serial interboard communication
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

General Information

Model 7070-324 is a member of the Flexor[®] family of high-performance PCIe boards based on the Xilinx Virtex-7 FPGA.

As a FlexorSet[™] integrated solution, the Model 3324 FMC is factory-installed on the 7070 FMC carrier. The required FPGA IP is installed and the board set is delivered ready for immediate use.

The delivered FlexorSet is a multichannel, high-speed data converter and is suitable for connection to the HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

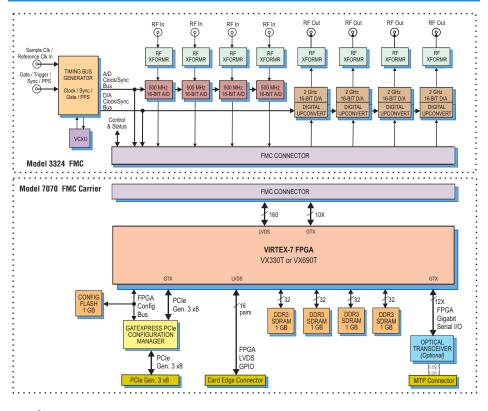
It includes four 500 MHz, 16-bit A/Ds, four digital upconverters, four 2 GHz, 16-bit D/As, and four banks of memory. In addition to supporting PCIe Gen. 3 as a native interface, the Model 7070-324 includes optional copper and optical connections to the Virtex-7 FPGA for custom I/O.

The Flexor Architecture

Based on the proven design of the Pentek Onyx family of Virtex-7 products, the 7070 FMC carrier retains all the key features of that family. As a central foundation of the board architecture, the FPGA has access to all data and control paths of both the carrier board and the FMC module, enabling factoryinstalled functions that include data multiplexing, channel selection, data packing, gating, triggering and memory control.

When delivered as an assembled board set, the 7070-324 includes factory-installed applications ideally matched to the board's analog interfaces. The functions include four A/D acquisition IP modules for simplifying data capture and data transfer.

Each of the four acquisition IP modules contains IP modules for DDR3 SDRAM memories.


The 7070-324 features four sophisticated D/A waveform playback IP modules. A linked-list controller allows users to easily play back to the D/As waveforms stored in either on-board or off-board host memory. Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

In each playback module, up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

A controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 7070-324 to operate as a turnkey solution without the need to develop any FPGA IP.

Extendable IP Design

For applications that require specialized functions, users can install their custom >

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458 Tel: 201·818·5900 ◆ Fax: 201·818·5904 ◆ Email: info@pentek.com

FlexorSet Model 7070-324

A/D Acquisition IP Modules

The 7070-324 features four A/D Acquisition IP Modules for easy capture and data moving. Each IP module can receive data from any of the four A/Ds, a test signal generator or from the D/A Waveform Playback IP Modules in loopback mode.

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for moving A/D data through the PCIe interface.

These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can can automatically construct metadata packets containing A/D channel ID, a sample accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Modules

The 7070-324 factory-installed functions include four sophisticated D/A Waveform Playback IP modules. A linked-list controller allows users to easily play back waveforms stored in either on-board or off-board host memory to the four D/As.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform. Up to 64 individual link entries per module can be chained together to create complex waveforms with a minimum of programming. > IP for data processing. Pentek Gate-Flow[®] FPGA Design Kits include all of the factory-installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

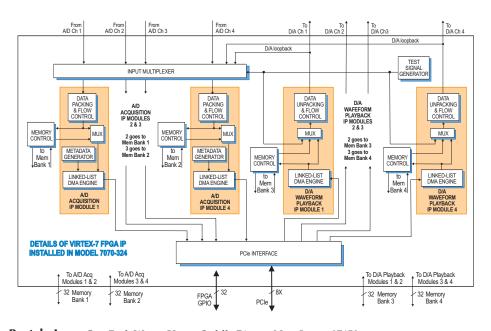
The 7070-324 can be optionally populated with one of two Virtex-7 FPGAs to match the specific requirements of the processing task. Supported FPGAs are VX30T or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, the lower-cost VX30T can be installed.

Option -104 provides 16 pairs of LVDS connections between the FPGA and a cardedge connector for custom I/O.

Option -110: For applications requiring optical gigabit links, up to 12 high-speed, full-duplex FPGA GTX lanes driven via an optical transceiver support serial protocols. A 12-lane MTPoptical connector is presented on the PCIe slot panel.

GateXpress for FPGA Configuration

The Flexor architecture includes GateXpress[®], a sophisticated FPGA-PCIe configuration manager for loading and reloading the FPGA. At power-up, GateXpress immediately presents a PCIe target for the host computer to discover, effectively giving the FPGA time to load from FLASH. This is especially important for larger FPGAs where the loading times can exceed the PCIe discovery window, typically 100 msec on many systems.


The board's configuration FLASH can hold four FPGA images. Images can be factory-installed IP or custom IP created by the user, and programmed into the FLASH via JTAG using Xilinx iMPACT or through the board's PCIe interface. At power-up the user can choose which image will load based on a hardware switch setting.

Once booted, GateXpress allows the user three options for dynamically reconfiguring the FPGA with a new IP image. The first option to load is an alternate image from FLASH through software control. The user selects the desired image and issues a reload command.

The second option is for applications where the FPGA image must be loaded directly through the PCIe interface. This is important in security situations where there can be no latent user image left in nonvolatile memory when power is removed. In applications where the FPGA IP may need to change many times during the course of a mission, images can be stored on the host computer and loaded through PCIe as needed.

The third option, typically used during development, allows the user to directly load the FPGA through JTAG using Xilinx iMPACT.

In all three FPGA loading scenarios, GateXpress handles the hardware negotiation simplifying and streamlining the loading task. In addition, GateXpress preserves the PCIe configuration space >

Pentek, Inc. One Park Way ◆ Upper Saddle River ◆ New Jersey 07458 Tel: 201·818·5900 ◆ Fax: 201·818·5904 ◆ Email: info@pentek.com

PCI Express Interface

The Model 7070-324 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

Memory Resources

The 7070-324 architecture supports four independent DDR3 SDRAM memory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets.

Model 8266

The Model 8266 is a fullyintegrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

-110	12x gigabit serial optical I/O with XC7VX690T FPGA, 4x w. XC7VX330T
110	edge connector
-076 -104	XC7VX690T-2 FPGA
Options:	
7070-324	4-Channel 500 MHz 16-bit A/D, 4-Channel 2 GHz 16-bit D/A with Virtex-7 FPGA - x8 PCIe
Model	Description
	0

mouor	Becomption
8266	PC Development System
	See 8266 Datasheet for
	Options

> allowing dynamic FPGA reconfiguration without needing to reset the host computer to rediscover the board. After the reload, the host simply continues to see the board with the expected device ID.

A/D Converter Stage

The front end accepts four analog HF or IF inputs on front-panel connectors with transformer-coupling into 500 MHz, 16-bit A/D converters.

Digital Upconverter and D/A Stage

Four D/As accept baseband real or complex data streams from the FPGA. Each stream then passes through the upconvert, interpolate and D/A stages of the converter.

When operating as DUCs (digital upconverters), the converters interpolate and translate real or complex baseband input signals to a programmable IF center frequency. The data is then delivered to the 16-bit D/A converter stages. Analog outputs are through front panel connectors.

If translation is disabled, the D/As act as interpolating 16-bit D/As with output sampling rates up to 2 GHz. In both modes the D/As provide interpolation factors of 2x, 4x, 8x and 16x.

Clocking and Synchronization

Two internal timing buses provide all timing and synchronization required by the A/D and D/A converters. Each includes a clock, sync and gate or trigger signals. An on-board clock generator receives an external sample clock from the front panel coaxial connector. This clock can be used directly by the A/D or D/A sections or divided by a built-in clock synthesizer circuit to provide different A/D and D/A clocks. In an alternate mode, the sample clock can be sourced from an on-board programmable VCXO. In this mode, the front coaxial panel connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel LVTTL Gate/Trigger/Sync connector can receive an external timing signal to synchronize multiple modules.

Specifications

Front Panel Analog Signal Inputs Input Type: Transformer-coupled, front panel connectors Transformer Type: Coil Craft WBC1-1TLB Full-Scale Input: +4 dBm into 50 ohms 3 dB Passband: 300 kHz to 750 MHz

A/D Converters

Type: Texas Instruments ADS54J60 **Sampling Rate:** Up to 500 MHz **Resolution:** 16 bits

Front Panel Analog Signal Outputs Output Type: Transformer-coupled, front panel connectors

Transformer Type: Coil Craft WBC4-6TLB Full-Scale Output: +4 dBm into 50 ohms 3 dB Passband: 300 kHz to 700 MHz D/A Converters

Type: Texas Instruments DAC38J84 **Input Data Rate:** Up to 500 MHz **Output Sample Rate:** Up to 2 GHz (with interpolation) **Resolution:** 16 bits

Sample Clock Sources: On-board clock synthesizer generates two clocks: an A/D clock and a D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz **Clock Dividers:** External clock or VCXO can be divided by 1, 2, 4, 8 or 16 for the A/D and D/A clocks

External Clock

Type: Front panel connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

External Trigger Input Type: Front panel connector Function: Programmable functions

include: trigger, gate, sync and PPS Field Programmable Gate Array Standard: Xilinx Virtex-7 XC7VX330T-2 Option -076: Xilinx Virtex-7 XC7VX690T-2 Custom FPGA I/O

Parallel (Option -104): 16 pairs of LVDS connections between the FPGA and a card-edge connector for custom I/O **Optical (Option -110):** 12x gigabit serial optical I/O with XC7VX690T FPGA, 4x with XC7VX330T

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8; **Environmental:** Level L1 & L2 air-cooled,

Level L3 conduction-cooled, ruggedized **Size:** 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

- Accepts RF signals from 400 MHz to 4000 MHz
- Accepts RF input levels from -60 dBm to -20 dBm
- Baseband IF output with up to 390 MHz bandwidth
- Internal OCXO or external 10 MHz frequency reference

General Information

The Bandit[®] Model 7120 is a two-channel, high-performance, stand-alone analog RF wideband downconverter. Packaged in a small, shielded PMC/XMC module with front-panel connectors for easy integration into RF systems, the module offers programmable gain, high dynamic range and a low noise figure.

With an input frequency range from 400 to 4000 MHz and a wide IF bandwidth of up to 390 MHz, the 7120 is an ideal solution for amplifying and downconverting antenna signals for communications, radar and signal intelligence systems.

Programmable Input Level

The 7120 accepts RF signals on two front-panel SSMC connectors. LNAs (Low Noise Amplifiers) are provided, along with two programmable attenuators allowing downconversion of input signals ranging from –60 dBm to –20 dBm in steps of 0.5 dB. Higher level signals can be attenuated prior to input.

Input Filter Options

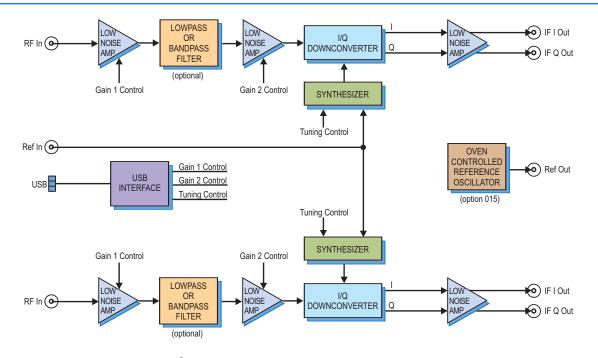
An optional five-stage lowpass or bandpass input filter can be included with several available frequency and attenuation characteristics for RF image rejection and harmonic suppression.

Quadrature Mixers

The 7120 features a pair of Analog Devices ADL5380 quadrature mixers. The ADL5380's are capable of excellent accuracy with amplitude and phase balances of ~ 0.07 dB and $\sim 0.2^{\circ}$, respectively.

Tuning Accuracy

The 7120 uses an Analog Devices ADF4351 low-noise, on-board frequency synthesizer as the LO (Local Oscillator). Locked to an external input reference for accuracy with a fractional-N phase-locked loop, its frequency is programmable across the 400 to the 4000 MHz band with a tuning resolution of better than 100 kHz.


On-board Reference Clock

In addition to accepting a 10 MHz reference signal on the front panel, the 7120 includes an on-board 10 MHz crystal oscillator which can be used as the reference to lock the internal LO frequency synthesizer.

This reference is an OCXO (Oven Controlled Crystal Oscillator), which provides an exceptionally precise frequency standard with excellent phase noise characteristics.

Wideband Output

Output is provided as baseband I and Q signals at bandwidths up to 390 MHz. Alternatively, either I or Q output can be used at some intermediate offset frequency convenient to the application. User-provided in-line output IF filters allow customizing the output bandwidth and offset frequency to the specific application requirements. This output is suitable for A/D conversion using Pentek high-performance signal acquisition products, such as those in the Cobalt and Onyx families.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com
www.pentek.com

Bandit Two-Channel Analog RF Wideband Downconverter - PMC/XMC

► Specifications

RF Input Connector Type: SSMC Input Impedance: 50 ohms Input Level Range: -60 dBm to -20 dBm Flatness: ±2 dB from 400 MHz to 1 GHz, ±3 dB from 1 GHz to 3 GHz, ±5 dB from 3 GHz to 4 GHz **RF Attenuator:** Programmable from 0 to 63 dB in 0.5 dB steps LO Synthesizer Tuning Frequency range: 400-4000 MHz, Resolution: < 10 kHz Tuning Speed: < 500 µsec Phase-Locked Loop Bandwidth: 100 kHz Phase Noise 1 kHz: -90 dBc/Hz 100 kHz: -110 dBc/Hz **1 MHz:** –130 dBc/Hz Noise Figure (referred to input) 60 dB gain: 2.6 dB Inband Output IP3 20 dB gain: +10 dBm 60 dB gain: +42 dBm **Reference Input/Output** Connector Type: SSMC Input/Output Impedence: 50 ohms **Reference Input Signal** Frequency: 10 MHz Level: 0 dBm, sine wave **Reference Output Signal** Frequency: 10 MHz Level: 0 dBm, sine wave

OCXO Reference Center Frequency: 10 MHz Frequency Stability vs. Change in Temperature: ±50.0 ppb Frequency Calibration: ±1.0 ppm Aging Daily: ±10 ppb/day First Year: ±300 ppb **Total Frequency Tolerance** (20 years): ±4.60 ppm Phase Noise 1 Hz Offset: -67 dBc/Hz 10 Hz Offset: -100 dBc/Hz **100 Hz Offset:** –130 dBc/Hz 1 KHz Offset: -148 dBc/Hz 10 KHz Offset: -154 dBc/Hz 100 KHz Offset: -155 dBc/Hz IF Output **Connector Type: SSMC** Output Impedance: 50 ohms Center Frequency: User definable Output Level: 0 dBm, nominal Programming Functions: RF Atten, IF Atten, Int/Ext Reference Select, LO Synthesizer Frequency Interface: USB Connector Type: MicroUSB Power Voltage: +12 VDC Current: 1.5 A PMC/XMC Interface: Power only on PMC P11 (option -104) or XMC P15 (option -105) Size: Standard PMC module, 2.91 in. x 5.87 in.

Ordering Information

Model	Description
7120	Bandit Two-Channel
	Analog RF Wideband
	Downconverter -
	PMC/XMC
Option	Description
-015	Oven Controlled
	Refernece Oscillator
-104	PMC P11 Power
-105	XMC P15 Power
-106	PCIe 6-pin connector
	(Power only)
-145	1.45 GHz lowpass input
	filter
-280	2.80 GHz lowpass input
	filter

 Pentek, Inc.
 One Park Way & Upper Saddle River & New Jersey 07458
 www.pentek.com

 Tel: 201/818/5900 & Fax: 201/818/5904 & Email: info@pentek.com
 www.pentek.com

- Accepts RF signals from 400 MHz to 4000 MHz
- Accepts RF input levels from -60 dBm to -20 dBm
- Baseband IF output with up to 390 MHz bandwidth
- Internal OCXO or external 10 MHz frequency reference

General Information

The Bandit[®] Model 7820 is a two-channel, high-performance, stand-alone analog RF wideband downconverter. Packaged in a small, shielded PCIe board with front-panel connectors for easy integration into RF systems, the board offers programmable gain, high dynamic range and a low noise figure.

With an input frequency range from 400 to 4000 MHz and a wide IF bandwidth of up to 390 MHz, the 7820 is an ideal solution for amplifying and downconverting antenna signals for communications, radar and signal intelligence systems.

Programmable Input Level

The 7820 accepts RF signals on two front-panel SSMC connectors. LNAs (Low Noise Amplifiers) are provided, along with two programmable attenuators allowing downconversion of input signals ranging from –60 dBm to –20 dBm in steps of 0.5 dB. Higher level signals can be attenuated prior to input.

Input Filter Options

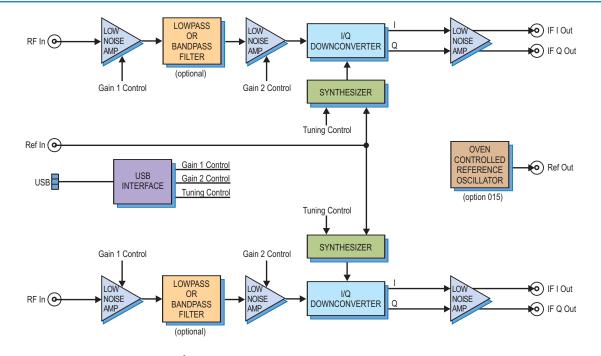
An optional five-stage lowpass or bandpass input filter can be included with several available frequency and attenuation characteristics for RF image rejection and harmonic suppression.

Quadrature Mixers

The 7820 features a pair of Analog Devices ADL5380 quadrature mixers. The ADL5380's are capable of excellent accuracy with amplitude and phase balances of ~ 0.07 dB and $\sim 0.2^{\circ}$, respectively.

Tuning Accuracy

The 7820 uses an Analog Devices ADF4351 low-noise, on-board frequency synthesizer as the LO (Local Oscillator). Locked to an external input reference for accuracy with a fractional-N phase-locked loop, its frequency is programmable across the 400 to the 4000 MHz band with a tuning resolution of better than 100 kHz.


On-board Reference Clock

In addition to accepting a 10 MHz reference signal on the front panel, the 7820 includes an on-board 10 MHz crystal oscillator which can be used as the reference to lock the internal LO frequency synthesizer.

This reference is an OCXO (Oven Controlled Crystal Oscillator), which provides an exceptionally precise frequency standard with excellent phase noise characteristics.

Wideband Output

Output is provided as baseband I and Q signals at bandwidths up to 390 MHz. Alternatively, either I or Q output can be used at some intermediate offset frequency convenient to the application. User-provided in-line output IF filters allow customizing the output bandwidth and offset frequency to the specific application requirements. This output is suitable for A/D conversion using Pentek high-performance signal acquisition products, such as those in the Cobalt and Onyx families.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com
www.pentek.com

► Specifications

RF Input Connector Type: SSMC Input Impedance: 50 ohms Input Level Range: -60 dBm to -20 dBm Flatness: ±2 dB from 400 MHz to 1 GHz, ± 3 dB from 1 GHz to 3 GHz, ± 5 dB from 3 GHz to 4 GHz **RF Attenuator:** Programmable from 0 to 63 dB in 0.5 dB steps LO Synthesizer Tuning Frequency range: 400-4000 MHz, Resolution: < 10 kHz Tuning Speed: < 500 µsec Phase-Locked Loop Bandwidth: 100 kHz Phase Noise 1 kHz: -90 dBc/Hz **100 kHz:** –110 dBc/Hz **1 MHz:** –130 dBc/Hz Noise Figure (referred to input) 60 dB gain: 2.6 dB **Inband Output IP3** 20 dB gain: +10 dBm 60 dB gain: +42 dBm **Reference Input/Output** Connector Type: SSMC Input/Output Impedence: 50 ohms **Reference Input Signal** Frequency: 10 MHz Level: 0 dBm, sine wave **Reference Output Signal** Frequency: 10 MHz Level: 0 dBm, sine wave

OCXO Reference Center Frequency: 10 MHz Frequency Stability vs. Change in Temperature: ±50.0 ppb Frequency Calibration: ±1.0 ppm Aging **Daily:** ±10 ppb/day First Year: ±300 ppb **Total Frequency Tolerance** (20 years): ±4.60 ppm Phase Noise 1 Hz Offset: -67 dBc/Hz 10 Hz Offset: -100 dBc/Hz **100 Hz Offset:** –130 dBc/Hz 1 KHz Offset: -148 dBc/Hz 10 KHz Offset: -154 dBc/Hz 100 KHz Offset: -155 dBc/Hz IF Output **Connector Type: SSMC** Output Impedance: 50 ohms Center Frequency: User definable Output Level: 0 dBm, nominal Programming Functions: RF Atten, IF Atten, Int/Ext Reference Select, LO Synthesizer Frequency Interface: USB Connector Type: MicroUSB Power Voltage: +12 VDC Current: 1.5 A **PCI-Express Interface PCI Express Bus:** x4 or x8, power only Environmental **Operating Temp:** 0° to 50° C Storage Temp: –20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: Half length PCIe card, 4.38 in. x 7.13 in.

Ordering Information

Model	Description
7820	Bandit Two-Channel
	Analog RF Wideband
	Downconverter - PCIe

 Option
 Description

 -015
 Oven Controlled Reference Oscillator

 -145
 1.45 GHz lowpass input filter

 -280
 2.80 GHz lowpass input

filter

Model 5220 COTS (left) and rugged version

- Accepts RF signals from 400 MHz to 4000 MHz
- Accepts RF input levels from -60 dBm to -20 dBm
- Baseband IF output with up to 390 MHz bandwidth
- Internal OCXO or external 10 MHz frequency reference

General Information

The Bandit[®] Model 5220 is a two-channel, high-performance, stand-alone analog RF wideband downconverter. Packaged in a small, shielded 3U VPX board with front-panel connectors for easy integration into RF systems, the board offers programmable gain, high dynamic range and a low noise figure.

With an input frequency range from 400 to 4000 MHz and a wide IF bandwidth of up to 390 MHz, the 5220 is an ideal solution for amplifying and downconverting antenna signals for communications, radar and signal intelligence systems.

Programmable Input Level

The 5220 accepts RF signals on two front-panel SSMC connectors. LNAs (Low Noise Amplifiers) are provided, along with two programmable attenuators allowing downconversion of input signals ranging from –60 dBm to –20 dBm in steps of 0.5 dB. Higher level signals can be attenuated prior to input.

Input Filter Options

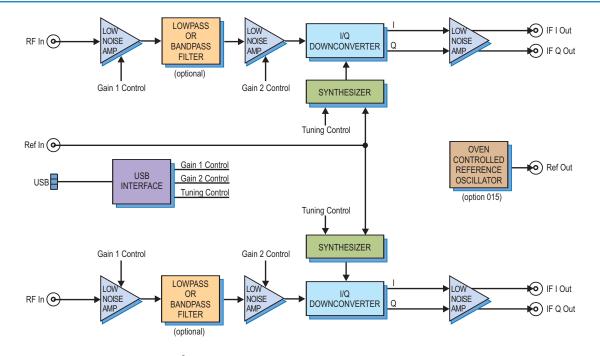
An optional five-stage lowpass or bandpass input filter can be included with several available frequency and attenuation characteristics for RF image rejection and harmonic suppression.

Quadrature Mixers

The 5220 features a pair of Analog Devices ADL5380 quadrature mixers. The ADL5380's are capable of excellent accuracy with amplitude and phase balances of ~ 0.07 dB and $\sim 0.2^{\circ}$, respectively.

Tuning Accuracy

The 5220 uses an Analog Devices ADF4351 low-noise, on-board frequency synthesizer as the LO (Local Oscillator). Locked to an external input reference for accuracy with a fractional-N phase-locked loop, its frequency is programmable across the 400 to the 4000 MHz band with a tuning resolution of better than 100 kHz.


On-board Reference Clock

In addition to accepting a 10 MHz reference signal on the front panel, the 5220 includes an on-board 10 MHz crystal oscillator which can be used as the reference to lock the internal LO frequency synthesizer.

This reference is an OCXO (Oven Controlled Crystal Oscillator), which provides an exceptionally precise frequency standard with excellent phase noise characteristics.

Wideband Output

Output is provided as baseband I and Q signals at bandwidths up to 390 MHz. Alternatively, either I or Q output can be used at some intermediate offset frequency convenient to the application. User-provided in-line output IF filters allow customizing the output bandwidth and offset frequency to the specific application requirements. This output is suitable for A/D conversion using Pentek high-performance signal acquisition products, such as those in the Cobalt and Onyx families.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com
www.pentek.com

Bandit Two-Channel Analog RF Wideband Downconverter - 3U VPX

► Specifications

RF Input Connector Type: SSMC Input Impedance: 50 ohms Input Level Range: -60 dBm to -20 dBm Flatness: ±2 dB from 400 MHz to 1 GHz, ± 3 dB from 1 GHz to 3 GHz, ± 5 dB from 3 GHz to 4 GHz **RF Attenuator:** Programmable from 0 to 63 dB in 0.5 dB steps LO Synthesizer Tuning Frequency range: 400-4000 MHz, Resolution: < 10 kHz Tuning Speed: < 500 µsec Phase-Locked Loop Bandwidth: 100 kHz Phase Noise 1 kHz: -90 dBc/Hz **100 kHz:** –110 dBc/Hz **1 MHz:** –130 dBc/Hz Noise Figure (referred to input) 60 dB gain: 2.6 dB **Inband Output IP3** 20 dB gain: +10 dBm 60 dB gain: +42 dBm **Reference Input/Output** Connector Type: SSMC Input/Output Impedence: 50 ohms **Reference Input Signal** Frequency: 10 MHz Level: 0 dBm, sine wave **Reference Output Signal** Frequency: 10 MHz Level: 0 dBm, sine wave

OCXO Reference Center Frequency: 10 MHz Frequency Stability vs. Change in Temperature: ±50.0 ppb Frequency Calibration: ±1.0 ppm Aging **Daily:** ±10 ppb/day **First Year:** ±300 ppb **Total Frequency Tolerance** (20 years): ±4.60 ppm Phase Noise 1 Hz Offset: -67 dBc/Hz 10 Hz Offset: -100 dBc/Hz **100 Hz Offset:** –130 dBc/Hz 1 KHz Offset: -148 dBc/Hz 10 KHz Offset: -154 dBc/Hz 100 KHz Offset: -155 dBc/Hz IF Output **Connector Type: SSMC** Output Impedance: 50 ohms Center Frequency: User definable Output Level: 0 dBm, nominal Programming Functions: RF Atten, IF Atten, Int/Ext Reference Select, LO Synthesizer Frequency Interface: USB Connector Type: MicroUSB Power Voltage: +12 VDC Current: 1.5 A **PCI Express Interface PCIe Bus:** x4, power only Environmental **Operating Temp:** 0° to 50° C Storage Temp: –20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: 3.937 in. x 6.717 in. (100 mm x 170.6 mm)

Ordering Information

Model	Description
5220	Bandit Two-Channel
	Analog RF Wideband
	Downconverter - 3U VPX

 Option
 Description

 -015
 Oven Controlled Reference Oscillator

 -145
 1.45 GHz lowpass input filter

 -280
 2.80 GHz lowpass input filter

Models 5720 & 5820

Features

- Accept RF signals from 400 MHz to 4000 MHz
- Accept RF input levels from -60 dBm to -20 dBm
- Baseband IF output with up to 390 MHz bandwidth
- Internal OCXO or external 10 MHz frequency reference

Bandit Two- or Four-Channel Analog RF Wideband Downconverter - 6U OpenVPX

General Information

These Bandit[®] models are two- or four-channel, high-performance, stand-alone analog RF wideband downconverters. Packaged in small, shielded 6U VPX boards with front-panel connectors for easy integration into RF systems, they offer programmable gain, high dynamic range and a low noise figure.

Model 5720 is a 6U VPX board that provides two channels, while Model 5820 is a double-density 6U VPX board that provides four channels.

With an input frequency range from 400 to 4000 MHz and a wide IF bandwidth of up to 390 MHz, these models are ideal solutions for amplifying and downconverting antenna signals for communications, radar and signal intelligence systems.

Programmable Input Level

The models accept RF signals on two or four front-panel SSMC connectors. LNAs (Low Noise Amplifiers) are provided, along with two programmable attenuators allowing downconversion of input signals ranging from –60 dBm to –20 dBm in steps of 0.5 dB.

Input Filter Options

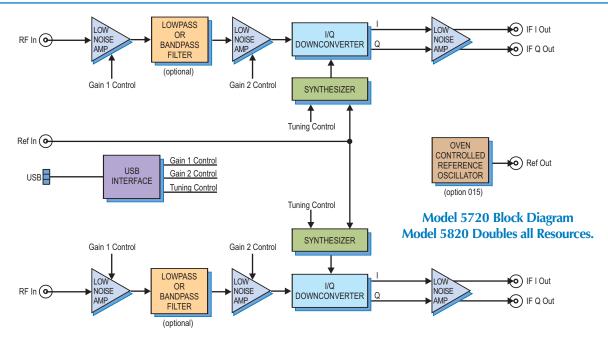
An optional five-stage lowpass or bandpass input filter can be included with several available frequency and attenuation characteristics for RF image rejection and harmonic suppression.

Quadrature Mixers

These models feature Analog Devices ADL5380 quadrature mixers. The ADL5380's are capable of excellent accuracy with amplitude and phase balances of ~0.07 dB and ~0.2°, respectively.

Tuning Accuracy

These models use the Analog Devices ADF4351 low-noise, on-board frequency synthesizer as the LO (Local Oscillator). Locked to an external input reference for accuracy with a fractional-N phase-locked loop, its frequency is programmable across the 400 to the 4000 MHz band with a tuning resolution of better than 100 kHz.


On-board Reference Clock

In addition to accepting a 10 MHz reference signal on the front panel, these models include on-board 10 MHz crystal oscillators which can be used as the reference to lock the internal LO frequency synthesizers.

This reference is an OCXO (Oven Controlled Crystal Oscillator), which provides an exceptionally precise frequency standard with excellent phase noise characteristics.

Wideband Output

Outputs are provided as baseband I and Q signals at bandwidths up to 390 MHz. Alternatively, either I or Q output can be used at some intermediate offset frequency convenient to the application. User-provided in-line output IF filters allow customizing the output bandwidth and offset frequency to the specific application requirements. This output is suitable for A/D conversion using Pentek high-performance signal acquisition products, such as those in the Cobalt and Onyx families. >

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com
www.pentek.com

Bandit Two- or Four-Channel Analog RF Wideband Downconverter - 6U OpenVPX

► Specifications

RF Input Connector Type: SSMC Input Impedance: 50 ohms Input Level Range: -60 dBm to -20 dBm Flatness: ±2 dB from 400 MHz to 1 GHz, ±3 dB from 1 GHz to 3 GHz, ±5 dB from 3 GHz to 4 GHz RF Attenuator: Programmable from 0 to 63 dB in 0.5 dB steps LO Synthesizer Tuning Frequency range: 400-4000 MHz, **Resolution:** < 10 kHz Tuning Speed: < 500 µsec Phase-Locked Loop Bandwidth: 100 kHz Phase Noise 1 kHz: -90 dBc/Hz 100 kHz: -110 dBc/Hz 1 MHz: -130 dBc/Hz Noise Figure (referred to input) 60 dB gain: 2.6 dB **Inband Output IP3** 20 dB gain: +10 dBm 60 dB gain: +42 dBm **Reference Input/Output Connector Type: SSMC** Input/Output Impedence: 50 ohms **Reference Input Signal** Frequency: 10 MHz Level: 0 dBm, sine wave **Reference Output Signal** Frequency: 10 MHz Level: 0 dBm, sine wave

OCXO Reference Center Frequency: 10 MHz Frequency Stability vs. Change in Temperature: ±50.0 ppb Frequency Calibration: ±1.0 ppm Aging Daily: ±10 ppb/day First Year: ±300 ppb **Total Frequency Tolerance** (20 years): ±4.60 ppm Phase Noise 1 Hz Offset: -67 dBc/Hz 10 Hz Offset: -100 dBc/Hz 100 Hz Offset: -130 dBc/Hz 1 KHz Offset: -148 dBc/Hz 10 KHz Offset: -154 dBc/Hz 100 KHz Offset: -155 dBc/Hz **IF** Output Connector Type: SSMC Output Impedance: 50 ohms Center Frequency: User definable Output Level: 0 dBm, nominal Programming Functions: RF Atten, IF Atten, Int/Ext Reference Select, LO Synthesizer Frequency Interface: USB Connector Type: MicroUSB Power Voltage: +12 VDC Current: 1.5 A **PCI Express Interface** PCI Bus: x4 or x8, power only Environmental **Operating Temp:** 0° to 50° C Storage Temp: –20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: 233 mm x 160 mm (9.173 in. x 6.299 in.)

Ordering Information

Model	Description
5720	Bandit Two-Channel Analog RF Wideband Downconverter - 6U VPX
	Single Density
5820	Bandit Four-Channel Analog RF Wideband Downconverter - 6U VPX Double Density

Option	Description
--------	-------------

-015	Oven Controlled
	Reference Oscillator
-145	1.45 GHz lowpass input
	filter
-280	2.80 GHz lowpass input
	filter

Models 7220, 7420 and 7320

Model 7420

Model 7320

Features

- Accept RF signals from 400 MHz to 4000 MHz
- Accept RF input levels from -60 dBm to -20 dBm
- Baseband IF output with up to 390 MHz bandwidth
- Internal OCXO or external 10 MHz frequency reference

General Information

These Bandit[®] models are two- or four-channel, high-performance, stand-alone analog RF wideband downconverters. Packaged in small, shielded cPCI boards with frontpanel connectors for easy integration into RF systems, they offer programmable gain, high dynamic range and a low noise figure.

Model 7320 is a 3U cPCI booard while Model 7220 is a 6U cPCI board; both provide two channels, while Model 7420 is a doubledensity 6U cPCI board that provides four channels.

With an input frequency range from 400 to 4000 MHz and a wide IF bandwidth of up to 390 MHz, these models are ideal solutions for amplifying and downconverting antenna signals for communications, radar and signal intelligence systems.

Programmable Input Level

The models accept RF signals on two or four front-panel SSMC connectors. LNAs (Low Noise Amplifiers) are provided, along with two programmable attenuators allowing downconversion of input signals ranging from –60 dBm to –20 dBm in steps of 0.5 dB.

Input Filter Options

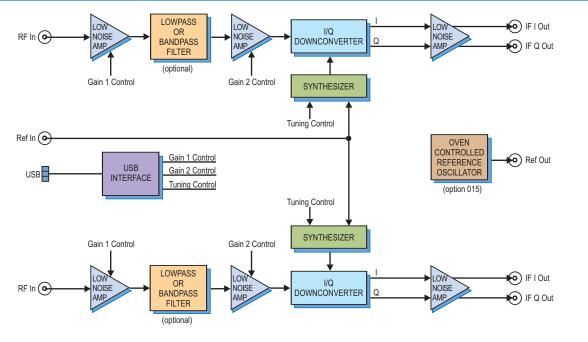
An optional five-stage lowpass or bandpass input filter can be included with several available frequency and attenuation characteristics for RF image rejection and harmonic suppression.

Quadrature Mixers

These models feature Analog Devices ADL5380 quadrature mixers. The ADL5380's are capable of excellent accuracy with amplitude and phase balances of \sim 0.07 dB and \sim 0.2°, respectively.

Tuning Accuracy

These models use the Analog Devices ADF4351 low-noise, on-board frequency synthesizer as the LO (Local Oscillator). Locked to an external input reference for accuracy with a fractional-N phase-locked loop, its frequency is programmable across the 400 to the 4000 MHz band with a tuning resolution of better than 100 kHz.


On-board Reference Clock

In addition to accepting a 10 MHz reference signal on the front panel, these models include on-board 10 MHz crystal oscillators which can be used as the reference to lock the internal LO frequency synthesizers.

This reference is an OCXO (Oven Controlled Crystal Oscillator), which provides an exceptionally precise frequency standard with excellent phase noise characteristics.

Wideband Output

Outputs are provided as baseband I and Q signals at bandwidths up to 390 MHz. Alternatively, either I or Q output can be used at some intermediate offset frequency convenient to the application. User-provided in-line output IF filters allow customizing the output bandwidth and offset frequency to the specific application requirements. This output is suitable for A/D conversion using Pentek high-performance signal acquisition products, such as those in the Cobalt and Onyx families.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com
www.pentek.com

Bandit Two- or Four-Channel Analog RF Wideband Downconverter - 6U/3U cPCI

► Specifications

RF Input Connector Type: SSMC Input Impedance: 50 ohms Input Level Range: -60 dBm to -20 dBm Flatness: ±2 dB from 400 MHz to 1 GHz, ±3 dB from 1 GHz to 3 GHz, ±5 dB from 3 GHz to 4 GHz **RF Attenuator:** Programmable from 0 to 63 dB in 0.5 dB steps LO Synthesizer Tuning Frequency range: 400-4000 MHz, Resolution: < 10 kHz Tuning Speed: < 500 µsec Phase-Locked Loop Bandwidth: 100 kHz Phase Noise 1 kHz: -90 dBc/Hz **100 kHz:** –110 dBc/Hz **1 MHz:** –130 dBc/Hz Noise Figure (referred to input) 60 dB gain: 2.6 dB Inband Output IP3 20 dB gain: +10 dBm 60 dB gain: +42 dBm **Reference Input/Output** Connector Type: SSMC Input/Output Impedence: 50 ohms **Reference Input Signal** Frequency: 10 MHz Level: 0 dBm, sine wave **Reference Output Signal** Frequency: 10 MHz Level: 0 dBm, sine wave

OCXO Reference Center Frequency: 10 MHz Frequency Stability vs. Change in Temperature: ±50.0 ppb Frequency Calibration: ±1.0 ppm Aging Daily: ±10 ppb/day First Year: ±300 ppb **Total Frequency Tolerance** (20 years): ±4.60 ppm Phase Noise 1 Hz Offset: -67 dBc/Hz 10 Hz Offset: -100 dBc/Hz **100 Hz Offset:** –130 dBc/Hz 1 KHz Offset: -148 dBc/Hz 10 KHz Offset: -154 dBc/Hz 100 KHz Offset: -155 dBc/Hz **IF** Output **Connector Type: SSMC** Output Impedance: 50 ohms Center Frequency: User definable Output Level: 0 dBm, nominal Programming Functions: RF Atten, IF Atten, Int/Ext Reference Select, LO Synthesizer Frequency Interface: USB Connector Type: MicroUSB Power Voltage: +12 VDC Current: 1.5 A **PCI Interface** PCI Bus: 32-bit, 66 MHz (supports 33 MHz), power only Environmental **Operating Temp:** 0° to 50° C **Storage Temp:** –20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: Standard 3U or 6U cPCI board

Ordering Information

Model	Description
7220	Bandit Two-Channel Analog RF Wideband
	Downconverter - 6U cPCI
7320	Bandit Two-Channel Analog RF Wideband Downconverter - 3U cPCI
7420	Bandit Four-Channel Analog RF Wideband Downconverter - 6U cPCI
Option	Description

-015	Oven Controlled
	Reference Oscillator
-145	1.45 GHz lowpass input
	filter
-280	2.80 GHz lowpass input
	filter

- Accepts RF signals from 400 MHz to 4000 MHz
- Accepts RF input levels from -60 dBm to -20 dBm
- Baseband IF output with up to 390 MHz bandwidth
- Internal OCXO or external 10 MHz frequency reference

General Information

The Bandit[®] Model 5620 is a two-channel, high-performance, stand-alone analog RF wideband downconverter. Packaged in a small, shielded AMC board with front-panel connectors for easy integration into RF systems, the board offers programmable gain, high dynamic range and a low noise figure.

With an input frequency range from 400 to 4000 MHz and a wide IF bandwidth of up to 390 MHz, the 5620 is an ideal solution for amplifying and downconverting antenna signals for communications, radar and signal intelligence systems.

Programmable Input Level

The 5620 accepts RF signals on two front-panel SSMC connectors. LNAs (Low Noise Amplifiers) are provided, along with two programmable attenuators allowing downconversion of input signals ranging from –60 dBm to –20 dBm in steps of 0.5 dB. Higher level signals can be attenuated prior to input.

Input Filter Options

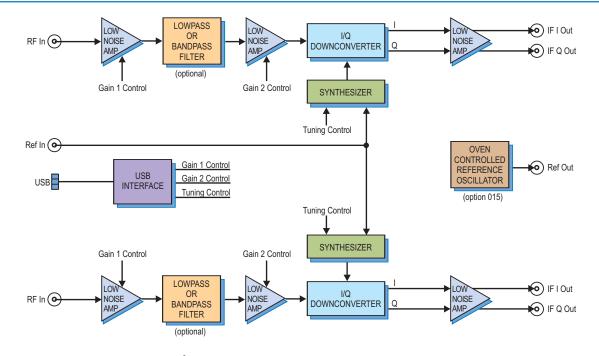
An optional five-stage lowpass or bandpass input filter can be included with several available frequency and attenuation characteristics for RF image rejection and harmonic suppression.

Quadrature Mixers

The 5620 features a pair of Analog Devices ADL5380 quadrature mixers. The ADL5380's are capable of excellent accuracy with amplitude and phase balances of ~ 0.07 dB and $\sim 0.2^{\circ}$, respectively.

Tuning Accuracy

The 5620 uses an Analog Devices ADF4351 low-noise, on-board frequency synthesizer as the LO (Local Oscillator). Locked to an external input reference for accuracy with a fractional-N phase-locked loop, its frequency is programmable across the 400 to the 4000 MHz band with a tuning resolution of better than 100 kHz.


On-board Reference Clock

In addition to accepting a 10 MHz reference signal on the front panel, the 5620 includes an on-board 10 MHz crystal oscillator which can be used as the reference to lock the internal LO frequency synthesizer.

This reference is an OCXO (Oven Controlled Crystal Oscillator), which provides an exceptionally precise frequency standard with excellent phase noise characteristics.

Wideband Output

Output is provided as baseband I and Q signals at bandwidths up to 390 MHz. Alternatively, either I or Q output can be used at some intermediate offset frequency convenient to the application. User-provided in-line output IF filters allow customizing the output bandwidth and offset frequency to the specific application requirements. This output is suitable for A/D conversion using Pentek high-performance signal acquisition products, such as those in the Cobalt and Onyx families.

Pentek, Inc. One Park Way
Upper Saddle River
New Jersey 07458
Tel: 201·818·5900
Fax: 201·818·5904
Email: info@pentek.com
www.pentek.com

► Specifications

RF Input Connector Type: SSMC Input Impedance: 50 ohms Input Level Range: -60 dBm to -20 dBm Flatness: ±2 dB from 400 MHz to 1 GHz, ± 3 dB from 1 GHz to 3 GHz, ± 5 dB from 3 GHz to 4 GHz **RF Attenuator:** Programmable from 0 to 63 dB in 0.5 dB steps LO Synthesizer Tuning Frequency range: 400-4000 MHz, Resolution: < 10 kHz Tuning Speed: < 500 µsec Phase-Locked Loop Bandwidth: 100 kHz Phase Noise 1 kHz: -90 dBc/Hz **100 kHz:** –110 dBc/Hz **1 MHz:** –130 dBc/Hz Noise Figure (referred to input) 60 dB gain: 2.6 dB **Inband Output IP3** 20 dB gain: +10 dBm 60 dB gain: +42 dBm **Reference Input/Output** Connector Type: SSMC Input/Output Impedence: 50 ohms **Reference Input Signal** Frequency: 10 MHz Level: 0 dBm, sine wave **Reference Output Signal** Frequency: 10 MHz Level: 0 dBm, sine wave

OCXO Reference Center Frequency: 10 MHz Frequency Stability vs. Change in Temperature: ±50.0 ppb Frequency Calibration: ±1.0 ppm Aging **Daily:** ±10 ppb/day First Year: ±300 ppb **Total Frequency Tolerance** (20 years): ±4.60 ppm Phase Noise 1 Hz Offset: -67 dBc/Hz 10 Hz Offset: -100 dBc/Hz **100 Hz Offset:** –130 dBc/Hz 1 KHz Offset: -148 dBc/Hz 10 KHz Offset: -154 dBc/Hz 100 KHz Offset: -155 dBc/Hz IF Output **Connector Type: SSMC** Output Impedance: 50 ohms Center Frequency: User definable Output Level: 0 dBm, nominal Programming Functions: RF Atten, IF Atten, Int/Ext Reference Select, LO Synthesizer Frequency Interface: USB Connector Type: MicroUSB Power Voltage: +12 VDC Current: 1.5 A **PCI-Express Interface** PCI Express Bus: Gen. 1 x4 or x8, power only Environmental **Operating Temp:** 0° to 50° C **Storage Temp:** –20° to 90° C Relative Humidity: 0 to 95%, non-cond. Size: Single-width, full-height AMC module, 2.89 in. x 7.11 in.

Ordering Information

Model	Description
5620	Bandit Two-Channel
	Analog RF Wideband
	Downconverter - AMC

 Option
 Description

 -015
 Oven Controlled Reference Oscillator

 -145
 1.45 GHz lowpass input filter

-280 2.80 GHz lowpass input filter

- Accepts RF signals from 800 MHz to 3.000 GHz in seven different models
- Accepts RF input levels from -60 to -20 dBm
- 225 MHz IF output with 80 MHz output bandwidth
- Internal OCXO or external 10 MHz frequency reference

General Information

The Bandit[®] Model 8111 provides a series of high-performance, stand-alone analog RF slot downconverter modules. Packaged in a small, shielded enclosure with connectors for easy integration into RF systems, the modules offer programmable gain, high dynamic range and a low noise figure. With input options to cover specific frequency bands of the RF spectrum, and an IF output optimized for A/D converters, the 8111 is an ideal solution for amplifying and downconverting antenna signals for communications, radar and signal intelligence systems.

Programmable Input Level

The 8111 accepts RF signals on a front panel SMA connector. An LNA (Low Noisefigure Amplifier) is provided along with two programmable attenuators allowing downconversion of input signals ranging from -60 dBm to -20 dBm in steps of 0.5 dB. Higher level signals can be attenuated prior to input.

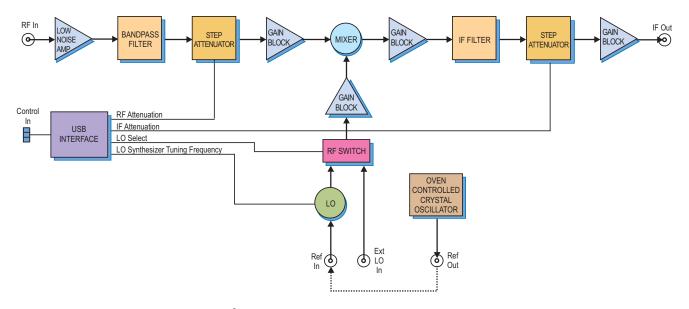
Preselector Options

Seven different input-frequency band options are offered, each tunable across a 400 MHz band, with an overlap of 100 MHz between adjacent bands. As a group, these seven options accommodate RF input signals from 800 MHz to 3.000 GHz as follows:

Option	Frequency Band
001	800-1200 MHz
002	1100-1500 MHz
003	1400-1800 MHz
004	1700-2100 MHz
005	2000-2400 MHz
006	2300-2700 MHz
007	2600-3000 MHz

Tuning Accuracy

The 8111 uses a low-noise, on-board frequency synthesizer as the LO (Local Oscillator). Locked to an external input reference for accuracy, its frequency is programmable across the 400 MHz band with a tuning resolution of 1 MHz. Alternatively, for applications demanding custom local oscillator characteristics, an external LO input signal can be accepted on a front panel connector and used instead of the on-board frequency synthesizer.


On-board Reference Clock

In addition to accepting a reference signal on the front panel, the 8111 includes an on-board 10 MHz crystal oscillator which can be used as the reference to lock the internal LO frequency synthesizer.

This reference is an OCXO (Oven Controlled Crystal Oscillator), which provides an exceptionally precise frequency standard with excellent phase noise characteristics.

IF Output

An 80 MHz-wide IF output is provided at a 225 MHz center frequency . This output is suitable for A/D conversion using Pentek high-performance signal acquisition products, such as those in the Cobalt and Onyx families. >

Specifications

RF Input Connector Type: SMA Input Impedance: 50 ohms Input Level Range: -60 dBm to -20 dBm Flatness: ±1 dB typical over each 400 MHz range **RF Attenuator:** Programmable from 0 to 31.5 dB in 0.5 dB steps LO Synthesizer Tuning Frequency range: 800-3000 MHz, across seven different options Resolution: 1 MHz Tuning Speed: < 500 µsec PLL Loop Bandwidth: 100 kHz Phase Noise 1 kHz: -90 dBc/Hz **100 kHz: -**110 dBc/Hz 1 MHz: -130 dBc/Hz Noise Figure (referred to input) 60 dB gain: 2.6 dB Inband Output IP3 20 dB gain: +10 dBm 60 dB gain: +42 dBm Reference / External LO Input Connector Type: SMA Input Impedence: 50 ohms **Reference Input Signal** Frequency: 10 MHz Level: 0 dBm to +20 dBm, sinewave **External LO Input Signal Frequency:** f_{IN} +225 MHz, where $f_{\rm IN}$ = RF input signal frequency Level: 0 dBm ±2 dBm

OCXO Reference Output Connector Type: SMA Center Frequency: 10 MHz Output Impedance: 50 ohms Output Level: +10 dBm, nominal, sine wave Frequency Stability vs. Change in **Temperature:** ±50.0 ppb Frequency Calibration: ±1.0 ppm Aging Daily: ±10 ppb/day First Year: ±300 ppb **Total Frequency Tolerance** (20 years): ±4.60 ppm Phase Noise **1 Hz Offset:** -67 dBc/Hz 10 Hz Offset: -100 dBc/Hz 100 Hz Offset: -130 dBc/Hz 1 KHz Offset: -148 dBc/Hz 10 KHz Offset: -154 dBc/Hz 100 KHz Offset: -155 dBc/Hz IF Attenuator: Programmable from 0 to 31.5 dB in 0.5 dB steps **IF** Output Connector Type: SMA Output Impedance: 50 ohms Center Frequency: 225 MHz Output Level: 0 dBm, nominal Programming Functions: RF Atten, IF Atten, Int/Ext LO Select, LO Synthezier Frequency Interface: USB Connector Type: MicroUSB Power Voltage: +12VDC Current: 1.5 A Connector Type: Micro DB-9, female Size: Module, 3.75 in x 7.5 in x 0.7 in

Ordering Information

Model	Description
8111	Bandit Modular Analog
	RF Slot Downconverter

Option	Input Frequency Band
-001	800-1200 MHz
-002	1100-1500 MHz
-003	1400-1800 MHz
-004	1700-2100 MHz
-005	2000-2400 MHz
-006	2300-2700 MHz
-007	2600-3000 MHz

Nerv!

Features

- 9U 19-inch rackmount, 9-slot, 16-inch deep chassis which houses 6U VPX boards
- 64-bit Windows[®] 7 Professional or Linux[®] workstation
- Intel[®] Core[™] i7 3.6 GHz processor
- 16 GB DDR3 SDRAM
- ReadyFlow[®] drivers and board support libraries installed
- Out-of-the-box ready-to-run examples

General Information

The Model 8264 is a fully-integrated, 6U VPX development system for Pentek Cobalt[®] and Onyx[®] software radio, data acquisition, and I/O boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

A fully-integrated system-level solution, the 8264 provides the user with a streamlined out-of-the-box experience. It comes preconfigured with Pentek hardware, drivers and software examples installed and tested to allow development engineers to run example applications out of the box.

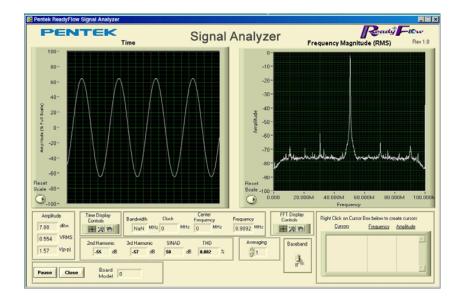
ReadyFlow Software

Pentek ReadyFlow drivers and board support libraries are preinstalled and tested with the 8264. ReadyFlow includes example applications with full source code, a command line interface for custom control over hardware, and Pentek's Signal Analyzer, a full-featured analysis tool that continuously displays live signals in both time and frequency domains.

System Implementation

Built on a professional 9U rackmount workstation, the 8264 is equipped with the latest Intel i7 processor, DDR3 SDRAM and a high-performance single-board computer. These features accelerate application code development and provide unhindered access to the high-bandwidth data available with Cobalt and Onyx analog and digital interfaces. The 8264 can be configured with 64-bit Windows or Linux operating systems. The 8264 uses a 19" 9U rackmount chassis that is 16" deep. Nine VPX slots provide ample space for an SBC, a switch card and multiple Pentek boards. Enhanced forced-air ventilation assures adequate cooling for all boards and dual 500-W power supplies gurantee more than adequate power for all installed boards. Mounting provisions for two 3.5 in. drives with front-accessible trays allow for easy removable storage. Front-panel access to USB, display, Ethernet and RS-232 ports simplifies development; an optional rear transition module supplements the front-panel connections with SATA, audio, a second video interface, and additional USB ports.

Configuration


All 8264 systems come with software and hardware installed and tested. Up to seven Pentek boards in the 8264 can be supported. Please contact Pentek to configure a system that matches your specific requirements.

Options

Available options include high-end multicore CPUs and choice of Windows or Linux.

Specifications

Operating System: 64-bit Windows 7 Professional or Linux Processor: Intel Core i7 processor Clock Speed: 3.6 GHz SDRAM: 16 GB Dimensions: 6U Chassis, 19" W x 16" D x 10.5" H Weight: 50 lb, approx. Operating Temp: 0° to +50° C Storage Temp: -40° to +85° C Relative Humidity: 5 to 95%, non-condensing Power Requirements: 100 to 240 VAC, 50 to 60 Hz, 1000 W max.

Ordering Information

Model	Description
8264	6U VPX Development
	System for Cobalt and
	Onyx Boards
Options:	

-094	64-bit Linux OS
-095	64-bit Windows 7 OS

The addition of third-party VPX boards may affect system performance. Please consult with us before doing so.

Pentek, Inc. One Park Way

Upper Saddle River

New Jersey 07458
Tel: 201·818·5900

Fax: 201·818·5904

Email: info@pentek.com

- 4U 19-inch rackmount PC server chassis, 21-inch deep
- 64-bit Windows[®] 7 Professional or Linux[®] workstation
- Intel[®] Core[™] i7 3.6 GHz processor
- 8 GB DDR3 SDRAM
- ReadyFlow[®] drivers and board support libraries installed
- Out-of-the-box test examples

General Information

The Model 8266 is a fully-integrated PC development system for Pentek Cobalt[®], Onyx[®] and Flexor[™] PCI Express software radio, data acquisition, and I/O boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

A fully-integrated system-level solution, the 8266 provides the user with a streamlined out-of-the-box experience. It comes preconfigured with Pentek hardware, drivers and software examples installed and tested to allow development engineers to run example applications out of the box.

ReadyFlow Software

Pentek ReadyFlow drivers and board support libraries are preinstalled and tested with the 8266. ReadyFlow includes example applications with full source code, a command line interface for custom control over hardware, and Pentek's Signal Analyzer, a full-featured analysis tool that continuously displays live signals in both time and frequency domains.

System Implementation

Built on a professional 4U rackmount workstation, the 8266 is equipped with the latest Intel processor, DDR3 SDRAM and a high-performance motherboard. These features accelerate application code development and provide unhindered access to the high-bandwidth data available with Cobalt, Onyx and Flexor analog and digital interfaces. The 8266 can be configured with 64-bit Windows or Linux operating systems.

The 8266 uses a 19" 4U rackmount chassis that is 21" deep. Enhanced forcedair ventilation assures adequate cooling for Pentek Cobalt, Onyx and Flexor boards.

The chassis is designed to draw cool air from the front and push warm air out the back. A 1000 W, 80+ Gold Power Supply guarantees more than enough power for additional boards.

Configuration

Pentek uses a variety of motherboards to provide the flexibility for operation and cooling of each system. Up to four Pentek Cobalt, Onyx or Flexor boards in the 8266 can be supported. Please contact Pentek to configure a system that requires additional PCIe slots for 3rd party hardware.

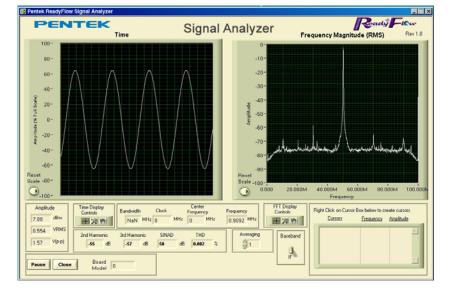
Options

Options for high-end multicore CPUs and extended memory support applications that require additional horsepower are available.

Specifications

Operating System: 64-bit Windows 7 Professional or Linux Processor: Intel Core i7 processor Clock Speed: 3.6 GHz SDRAM: 8 GB Dimensions: 4U Chassis, 19" W x 21" D x 7" H Weight: 35 lb, approx. Operating Temp: 0° to +50° C Storage Temp: -40° to +85° C Relative Humidity: 5 to 95%, non-condensing Power Requirements: 100 to 240 VAC, 50 to 60 Hz, 1000 W max.

Ordering Information


Model	Description
8266	PC Development System for PCIe Cobalt, Onyx and
	Flexor Boards

Options:

-094	64-bit Linux OS
-095	64-bit Windows 7 OS
-101	Upgrade to 64 GB
	DDR3 SDRAM

The addition of third-party PCIe cards may affect system performance. Please consult with us before doing so.

 Pentek, Inc.
 One Park Way

 Upper Saddle River
 New Jersey 07458

 Tel: 201.818:5900

 Fax: 201.818:5904
 Email: info@pentek.com

- 9-slot, 4U 19-inch rackmount, 12-inch deep chassis which houses 3U VPX boards
- 64-bit Windows[®] 7 Professional or Linux[®] workstation
- Intel[®] Core[™] i7 3.6 GHz processor
- 8 GB DDR3 SDRAM
- ReadyFlow[®] drivers and board support libraries installed
- Out-of-the-box ready-to-run examples

General Information

The Model 8267 is a fully-integrated, 3U VPX development system for Pentek Cobalt[®], Onyx[®] and FlexorTM software radio, data acquisition, and I/O boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

A fully-integrated system-level solution, the 8267 provides the user with a streamlined out-of-the-box experience. It comes preconfigured with Pentek hardware, drivers and software examples installed and tested to allow development engineers to run example applications out of the box.

ReadyFlow Software

Pentek ReadyFlow drivers and board support libraries are preinstalled and tested with the 8267. ReadyFlow includes example applications with full source code, a command line interface for custom control over hardware, and Pentek's Signal Analyzer, a full-featured analysis tool that continuously displays live signals in both time and frequency domains.

System Implementation

Built on a professional 4U rackmount workstation, the 8267 is equipped with the latest Intel i7 processor, DDR3 SDRAM and a high-performance single-board computer. These features accelerate application code development and provide unhindered access to the high-bandwidth data available with Cobalt, Onyx and Flexor analog and digital interfaces. The 8267 can be configured with 64-bit Windows or Linux operating systems. The 8267 uses a 19" 4U rackmount chassis that is 12" deep. Nine VPX slots provide ample space for an SBC, a switch card and multiple Pentek boards. Enhanced forcedair ventilation assures adequate cooling for all boards and dual 250-W power supplies gurantee more than adequate power for all installed boards. Mounting provisions for two 3.5 in. drives with front-accessible trays allow for easy removable storage. Front-panel access to USB, display, Ethernet and RS-232 ports simplifies development; an optional rear transition module supplements the front-panel connections with SATA, audio, a second video interface, and additional USB ports.

Configuration


All 8267 systems come with software and hardware installed and tested. Up to seven Pentek boards in the 8267 can be supported. Please contact Pentek to configure a system that matches your specific requirements.

Options

Available options include high-end multicore CPUs and extended memory support.

Specifications

Operating System: 64-bit Windows 7 Professional or Linux Processor: Intel Core i7 processor Clock Speed: 3.6 GHz SDRAM: 8 GB standard, 16 GB optional Dimensions: 4U Chassis, 19" W x 12" D x 7" H Weight: 35 lb, approx. Operating Temp: 0° to +50° C Storage Temp: -40° to +85° C Relative Humidity: 5 to 95%, non-condensing Power Requirements: 100 to 240 VAC, 50 to 60 Hz, 1000 W max.

Ordering Information

Model	Description
8267	3U VPX Development
	System for Cobalt, Onyx
	and Flexor Boards

Options:

-094	64-bit Linux OS
-095	64-bit Windows 7 OS
-101	Upgrade to 16 GB DDR3 SDRAM

The addition of third-party VPX boards may affect system performance. Please consult with us before doing so.

Customer Information

Placing an Order

When placing a purchase order for Pentek products, please provide the model number and product description. You may place your orders by letter, telephone, email or fax; you should confirm a verbal order by mail, email or fax.

All orders should specify a purchase order number, bill-to and ship-to address, method of shipment, and a contact name and telephone number.

U.S. orders should be made out to Pentek, Inc. and may be placed directly at our office address, or c/o our authorized sales representative in your area.

International orders may be placed with us, or with our authorized distributor in your country. They have pricing and availability information and they will be pleased to assist you.

Prices and Price Quotations

All prices are F.O.B. factory in U.S. dollars. Shipping charges and applicable import, federal, state or local taxes, are paid by the purchaser.

We're glad to respond to your request for price quotation just contact the corporate office, or your local representative. Price and delivery quotations are valid for 30 days, unless otherwise stated.

Quantity discounts for large orders are available and will be included in our price quotation, if applicable.

Terms

Terms are Net 30 days for accounts with established credit; until credit is established, we require prepayment, or will ship C.O.D.

Shipping

For new orders, we normally ship UPS ground with shipping charges prepaid and added to our invoice. If you are in a hurry, we will ship UPS Red, UPS Blue, FedEx, or the carrier of your choice, as you request.

Order Cancellation and Returns

All orders placed with Pentek are considered binding and are subject to cancellation charges. Hardware products may be returned within 30 days after receipt, subject to a restocking charge. Before returning a product, please call Customer Service to obtain a Return Material Authorization (RMA) number. Software purchases are final and we cannot allow returns.

Warranty

Pentek warrants its products to conform to published specifications and to be free from defects in materials and workmanship for a period of one year from the date of delivery, when used under normal operating conditions and within the service conditions for which they were furnished.

The obligation of Pentek arising from a warranty claim shall be limited to repairing or, optionally, replacing without charge any product which proves to be defective within the term and scope of the warranty. Pentek must be notified of the defect or nonconformity within the warranty period. The affected product must be returned with shipping charges and insurance prepaid. Pentek will pay shipping charges for the return of product to buyer, except for products returned from outside the USA.

Limitations of Warranty

This warranty does not apply to products which have been repaired or altered by anyone other than Pentek or its authorized representatives.

The warranty does not extend to products that have been damaged by misuse, neglect, improper installation, unauthorized modification, or extreme environmental conditions, that fall outside of the scope of the product's environmental specifications.

Due to the normal, finite write-cycle limits of Solid State Drives (SSDs), Pentek shall not be liable for warranty coverage of SSDs caused by wear-related issues that arise as an SSD reaches its write-cycle limit.

Pentek specifically disclaims merchantability or fitness for a particular purpose. Pentek shall not be held liable for incidental or consequential damages arising from the sale, use, or installation of any Pentek product. Regardless of circumstances, Pentek's liability under this warranty shall not exceed the purchase price of the product.

Extended Warranty

You may purchase an extended warranty on our boardlevel products for a fee of 1% of the list price per month of coverage, or 10% of the list price per year of coverage.

All Pentek software products (excluding 3rd-party products) include free maintenance and free upgrades for one year. Extended software maintenance is available for one, two, and three years, starting after the first year.

Service and Repair

You must obtain a Return Material Authorization (RMA) before returning any product to Pentek for service or repair. RMA requests must be submitted online at:

Return Material Authorization Form

After the form is completed in its entirety and submitted, Pentek shall email you a receipt and start processing your request. Once your request has been approved, Pentek shall e-mail you an RMA number, shipping instructions, and a quotation if the product is out of warranty.

Carefully package the product in its original packaging, if it is still available, and ship it to Pentek prepaid (if within the US) or free domicile DDP (if outside the US). Pentek shall not be responsible for loss or damage in shipment to Pentek, so you are strongly encouraged to insure the shipment for its full replacement value.

When the work is completed, we will return the product to you along with a statement of work performed.

Customer Service phone: 201-818-5900 • fax: 201-818-5697 • email: <u>custsrvc@pentek.com</u>

